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Abstract 

Background The multicohort, open‑label, phase 1b KEYNOTE‑173 study was conducted to investigate 
pembrolizumab plus chemotherapy as neoadjuvant therapy for triple‑negative breast cancer (TNBC). This exploratory 
analysis evaluated features of the tumor microenvironment that might be predictive of response.

Methods Cell fractions from 20 paired samples collected at baseline and after one cycle of neoadjuvant 
pembrolizumab prior to chemotherapy initiation were analyzed by spatial localization (tumor compartment, stromal 
compartment, or sum of tumor and stromal compartments [total tumor]) using three six‑plex immunohistochemistry 
panels with T‑cell, myeloid cell, and natural killer cell components. Area under the receiver operating characteristic 
curve (AUROC) was used to assess associations between immune subsets and gene expression signatures 
(T‑cell–inflamed gene expression profile  [TcellinfGEP] and 10 non‑TcellinfGEP signatures using RNA sequencing) 
and pathologic complete response (pCR).

Results At baseline, six immune subsets quantitated within the tumor compartment showed AUROC with 95% CIs 
not crossing 0.5, including  CD11c+ cells (macrophage and dendritic cell [DC]: AUROC, 0.85; 95% confidence interval 
[CI] 0.63–1.00),  CD11c+/MHCII+/CD163−/CD68− cells (DC: 0.76; 95% CI, 0.53–0.99),  CD11c+/MHCII−/CD163−/CD68− 
cells (nonactivated/immature DC: 0.80; 95% CI 0.54–1.00), and  CD11c+/CD163+ cells (M2 macrophage: 0.77; 95% CI 
0.55–0.99). Other associations with pCR included baseline  CD11c+/MHCII−/CD163−/CD68− (nonactivated/immature 
DC) within the total tumor (AUROC, 0.76; 95% CI 0.51–1.00) and the baseline CD11c/CD3 ratio within the tumor 
compartment (0.75; 95% CI 0.52–0.98). Changes in immune subsets following one cycle of pembrolizumab 
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were not strongly associated with pCR. Although T‑cell associations were relatively weak, specific CD8 subsets 
trended toward association. The AUROC for discriminating pCR based on  TcellinfGEP was 0.55 (95% CI 0.25–0.85); 
when detrended by  TcellinfGEP, AUROC varied for the non‑TcellinfGEP signatures.  TcellinfGEP expression trended higher 
in responders than in nonresponders when evaluating pCR.

Conclusions Myeloid cell populations within the tumor compartment at baseline and  TcellinfGEP show a promising 
trend toward an association with pCR in a small subgroup of patients with early‑stage TNBC treated with neoadjuvant 
pembrolizumab plus chemotherapy.

Trial registration ClinicalTrials.gov, NCT02622074; registration date, December 2, 2015.

Keywords Immunohistochemistry, Triple‑negative breast cancer, Tumor microenvironment

Background
Triple-negative breast cancer (TNBC) is a heterogeneous 
disease with distinct pathological, genetic, and clinical 
features among molecular subtypes that result in different 
prognoses and varying sensitivity to neoadjuvant 
treatment [1–3]. Poor long-term outcomes have been 
observed in patients with TNBC compared with non-
TNBC, despite initial sensitivity to chemotherapy [4, 
5]. Among patients with advanced TNBC, treatment 
with immune checkpoint inhibitors early in the disease 
course has been associated with better response rates 
than treatment later in the disease course, likely due to 
the development of immune escape mechanisms driven 
by features of the tumor microenvironment (TME) [6–
11]. The features of the TME that may influence clinical 
response to immune checkpoint inhibitors are not well 
understood.

Recent evidence supports the addition of 
programmed cell death protein 1 (PD-1) or 
programmed death ligand 1 (PD-L1) inhibitors to 
neoadjuvant chemotherapy for high-risk, early-stage 
TNBC [12–17]. In the phase 1b KEYNOTE-173 study, 
neoadjuvant pembrolizumab plus chemotherapy 
showed manageable toxicity and promising antitumor 
activity in high-risk early-stage TNBC (pathologic 
complete response [pCR], 60%; range, 49–71%). Higher 
baseline PD-L1 combined positive score (CPS) and 
pre- and on-treatment stromal tumor-infiltrating 
lymphocytes were significantly associated with higher 
pCR rates (P = 0.0127, 0.0059, and 0.0085, respectively) 
[13]. In the phase 3 KEYNOTE-522 study, the benefit of 
neoadjuvant pembrolizumab plus chemotherapy with 
respect to differences in pCR was observed in patients 
with early-stage TNBC with high (PD-L1 CPS ≥ 1; 
14.2%; 95% CI 5.3–23.2) and low PD-L1 expression (PD-
L1 CPS < 1; 18.3%; 95% CI − 3.3 to 36.8); a statistically 
significant improvement in pCR (estimated treatment 
difference, 13.6%; 95% CI 5.4–21.8; P < 0.001) was also 
observed in patients with PD-L1 CPS ≥ 1 tumors [12]. 
After 63.1 months of follow-up, a clinically meaningful 

improvement in event-free survival was observed 
with neoadjuvant pembrolizumab plus chemotherapy 
followed by adjuvant pembrolizumab compared with 
neoadjuvant chemotherapy alone (hazard ratio [HR], 
0.63; 95% CI 0.49–0.81) [18].

Molecular characterization of early-stage TNBC may 
help identify patients who have a pCR after neoadjuvant 
therapy with pembrolizumab plus chemotherapy. 
Although higher expression of PD-L1, T-cell–
inflamed gene expression profile  (TcellinfGEP), tumor 
mutational burden,  CD8+ T cells, and stromal tumor-
infiltrating lymphocytes have been associated with 
improved response to pembrolizumab monotherapy 
in the metastatic setting [19, 20], the association 
between features of the TME and clinical efficacy with 
neoadjuvant pembrolizumab are not well understood. 
MHCII expression has been associated with response to 
PD-(L)1 inhibition across multiple malignancies, such 
as melanoma, classic Hodgkin lymphoma, and bladder 
cancer [21–24]. In TNBC, MHCII expression was 
shown to be positively correlated with T cell expansion 
following treatment with a PD-1 inhibitor [25]. In a 
multivariate model of TME features using biopsy samples 
from patients with TNBC enrolled in the NeoTRIP trial, 
MHCII-positive cancer cells were predictors of response 
to atezolizumab plus neoadjuvant chemotherapy [26]. 
In a phase 1/2 study, MHCII was predictive of response 
to pembrolizumab plus neoadjuvant chemotherapy in 
HER2-negative breast cancer, but the predictive role of 
MHCII in TNBC remained unclear [27].

Multiplex immunohistochemistry (mIHC) is an 
investigative tool that provides objective quantitative data 
by analyzing multiple biomarkers to describe the TME 
based on immune subsets and tumor compartments. 
To improve the understanding of the TME and 
drivers of response to neoadjuvant pembrolizumab 
plus chemotherapy in high-risk early-stage TNBC, 
we explored clinical response to neoadjuvant 
pembrolizumab plus chemotherapy and the effects of 
a single cycle of pembrolizumab on immune subsets 
based on tumor compartments using the novel mIHC 
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methodology and gene expression signatures using RNA 
sequencing in patients enrolled in KEYNOTE-173.

Methods
Patients and study design
KEYNOTE-173 (NCT02622074) was an international, 
open-label, multicohort, phase 1b study designed to 
evaluate regimens of pembrolizumab plus chemotherapy 
as neoadjuvant treatment in adult women with newly 
diagnosed, early-stage, high-risk TNBC, defined as 
estrogen receptor/progesterone receptor–negative 
and HER2-negative by in  situ hybridization or 
immunohistochemistry. Eligibility criteria and the study 
design have been previously described [13]. Briefly, 
patients had previously untreated, nonmetastatic (M0) 
disease (T1c, N1–N2; T2–T4c, N0–N2) according to 
American Joint Committee on Cancer staging, 7th 
Edition [28] and an Eastern Cooperative Oncology Group 
performance status of 0 or 1.

The study enrolled six cohorts for treatment with 
different pembrolizumab plus chemotherapy regimens. 
All patients received pembrolizumab 200  mg every 
3 weeks (Q3W) intravenously before surgery for 9 cycles 
or until unacceptable toxicity or withdrawal of consent. 
In cycles 2 through 5, patients also received weekly nab-
paclitaxel 125  mg/m2 (cohort A), weekly nab-paclitaxel 
100 mg/m2 plus carboplatin area under the curve (AUC) 
6 Q3W (cohort B), weekly nab-paclitaxel 125  mg/m2 
plus carboplatin AUC5 Q3W (cohort C), weekly nab-
paclitaxel 125  mg/m2 plus weekly carboplatin AUC2 
(cohort D), weekly paclitaxel 80 mg/m2 plus carboplatin 
AUC5 Q3W (cohort E), or weekly paclitaxel 80  mg/
m2 plus weekly carboplatin AUC2 (cohort F). In cycles 
6 through 9, all patients received doxorubicin 60  mg/
m2 plus cyclophosphamide 600  mg/m2 Q3W. Definitive 
surgery was performed 3 to 6 weeks after completion of 
neoadjuvant treatment.

The study protocol and all amendments were approved 
by the institutional review board or ethics committee at 
each participating institution. The study was conducted 
in accordance with the protocol, its amendments, the 
ethical principles originating from the Declaration of 
Helsinki, and Good Clinical Practice guidelines. Written 
informed consent was provided by all patients before 
enrollment.

Assessments
Tumor tissue samples were obtained at baseline and 
after 1 cycle of pembrolizumab prior to initiation of 
chemotherapy. Three six-plex immunohistochemistry 
panels were evaluated: natural killer cell panel (CD16/
CD56/CD11b/CD20/CD3/CD45), activated T-cell 
panel (CD3/CD8/FoxP3/Ki67/granzyme B/PD-1), and 

myeloid cell panel (CD68/CD163/MHCII/arginase/
CD33/CD11c). These panels were used to quantify TME-
associated cell fractions (B cells, natural killer cells, total 
T cells, Treg, activated and inactive CD8 T cells, dendritic 
cells [DCs], granulocytes, and total and M2 macrophages) 
by spatial localization (tumor compartment, stromal 
compartment, and sum of tumor plus stromal 
compartments [total tumor]) on whole-slide images with 
Halo software (Indica Labs, Albuquerque, NM, USA). For 
mIHC, formalin-fixed, paraffin-embedded tissue blocks 
were used to cut 5-μm sections that were baked at 60 °C 
for 1  h then deparaffinized and rehydrated with xylene 
and graded ethanols. Thereafter, slides were subjected 
to heat-induced epitope retrieval in 1× target retrieval 
solution (Agilent, Santa Clara, CA, USA). Slides were 
then incubated in 3% hydrogen peroxide solution to block 
endogenous peroxidase followed by PKI buffer to block 
protein (Akoya Biosciences, Marlborough, MA, USA). 
A Bond RX stainer (Leica Biosystems, Buffalo Grove, IL, 
USA) was used for six-plex staining with tyramide signal 
amplification–based Opal multiplexing reagents (Akoya 
Biosciences). Each primary antibody (Supplementary 
Table  1) was incubated for 60  min, followed by Opal 
polymer horseradish peroxidase and tyramide signal 
amplification–conjugated Opal fluorophore application 
(Akoya Biosciences). Antibodies were stripped using 
epitope retrieval 1 buffer (Leica Biosystems) after each 
staining cycle. Nuclei were detected using Spectral 
DAPI (Akoya Biosciences), and slides were cover-
slipped for scanning. Stained slides were scanned using 
the Vectra 3 Imaging System (Akoya Biosciences) at 
20× magnification. Image tiles were deconvoluted using 
inForm software (Akoya Biosciences) and stitched into 
whole-slide images using Halo software (Indica Labs, 
Albuquerque, NM, USA), followed by quantitative 
analysis. Manual annotations were used to define tumor-
containing regions on stitched mIHC images in Halo 
software (version 3.0.311.337) with the reference of serial 
hematoxylin and eosin scans. Tumor-containing regions 
were segmented into tumor and stroma compartments 
using the Random Forest classifier in Halo. Density, 
defined as number of positive cells per  mm2, was 
calculated for each analyte in the tumor compartment, 
stromal compartment, and total tumor.

RNA sequencing was performed using the HiSeq 
3000/HiSeq 4000 platform (Illumina Inc, San Diego, CA, 
USA). The RNA-sequencing raw reads were processed 
using OmicSoft sequence aligner (OmicSoft ArraySuite, 
Qiagen, Germantown, MD, USA) and were aligned 
to the reference genome Human.B37.3 followed by 
quantification with Ensembl.R75 as the genome model. 
The  TcellinfGEP status was derived from the weighted 
sum of the normalized expression value of the 18-gene 
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signature present on the NanoString Pan Cancer Immune 
Panel run at Almac Diagnostic Service [29]. Scores for the 
10 non-TcellinfGEP signatures (angiogenesis, glycolysis, 
granulocytic myeloid-derived suppressor cell [gMDSC], 
hypoxia, monocytic myeloid-derived suppressor cell 
[mMDSC], MYC, proliferation, RAS, stroma/epithelial 
mesenchymal transition [EMT]/transforming growth 
factor β [TGFβ], WNT]) were also evaluated [30].

Objectives and outcomes
In this exploratory analysis, the key objective was to 
characterize the TME changes and gene expression after 
one cycle of pembrolizumab and correlation with clinical 
outcomes. The primary clinical end point of this analysis 
was pCR rate, defined as no invasive residual disease in 
breast or nodes, non-invasive breast residuals allowed 
 (pCRypT0/Tis ypN0) or no invasive or non-invasive residual 
disease in breast or nodes  (pCRypT0 ypN0), at the time 
of definitive surgery (approximately 3 to 6  weeks after 

completion of neoadjuvant treatment) by local pathology 
review of biopsied tissue samples. Objective response 
rate (ORR) was assessed at baseline, at cycle 5, and at the 
end of treatment, and was evaluated using RECIST v1.1 
by investigator review as a secondary end point.

Statistical analyses
The analysis population comprised all patients enrolled 
in the KEYNOTE-173 study who received ≥1 dose 
of pembrolizumab and had matched tissue samples 
available for response evaluation, mIHC, and RNA 
sequencing. All cohorts were pooled for this analysis. 
Responders included patients with pCR by pathologic 
response assessment or patients who achieved a CR or 
PR by radiographic response assessment. Nonresponders 
included patients with no pCR or patients who did not 
achieve a CR or PR. Response was evaluated based on 
immune subsets, spatial localization, T-cell population, 
and  TcellinfGEP and non-TcellinfGEP consensus 

Table 1 AUROC (95% CI) for discriminating pCR based on immune subsets and spatial localization

AUROC area under the receiver operating characteristic curve, CI confidence interval, DC dendritic cell, pCR pathologic complete response
a Negative correlations between change from baseline and baseline values were observed; therefore, baseline de-trending was applied to change from baseline 
values

AUROC (95% CI) Tumor Stromal Total tumor

Cell population, baseline

CD11c+ (macrophages and DCs) 0.85 (0.63 to 1.00) – –

CD11c+/MHCII+/CD163–/CD68– (DCs) 0.76 (0.53 to 0.99) – –

CD11c+/MHCII–/CD163–/CD68– (nonactivated/imma‑
ture DCs)

0.80 (0.54 to 1.00) – 0.76 (0.51 to 1.00)

CD11c+/CD163+ (M2 macrophages) 0.77 (0.55 to 0.99) – –

Cell population, baseline ratio

CD11c/CD3 ratio 0.75 (0.52 to 0.98) 0.44 (0.17 to 0.71) 0.58 (0.29 to 0.87)

Detrended change from baseline and pCR after  baselinea

CD163+/MHCII+ (DC3) 0.58 (0.31 to 0.86) 0.20 (0 to 0.42) 0.26 (0.03 to 0.50)
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Fig. 1 pCR based on immune subsets and spatial localization at baseline. A  CD11c+ (macrophages and DCs); B  CD11c+/MHCII+/CD163−/CD68− 
(DCs); C  CD11c+/MHCII−/CD163−/CD68− (nonactivated/immature DCs); D  CD11c+/CD163+ (M2 macrophages); and E CD11c/CD3 baseline ratio. 
Abbreviations: DC: dendritic cell; pCR: pathologic complete response; sqrt: square root
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signatures. The area under the receiver operator 
characteristic curve (AUROC) was used to assess 
associations between response and immune subsets 
within the tumor compartment, stromal compartment, 
and the total tumor at baseline. All analyses were 
descriptive. Top-ranked findings are reported and were 
defined as an AUROC (95% CI) that did not cross 0.5, 
which was considered indicative of correlation with 
response. The baseline ten non-TcellinfGEP signatures 
were detrended by  TcellinfGEP. The baseline-detrended 
change from baseline after one cycle of pembrolizumab 
was evaluated for the six-plex panels by each tumor 

compartment,  TcellinfGEP, and the ten non-TcellinfGEP 
signatures.

Results
The median follow-up duration was 19.6 months (range, 
4.0–27.4) for 60 patients enrolled across all cohorts. 
Baseline characteristics of the KEYNOTE-173 study have 
been previously reported [13]. Briefly, the median age was 
48.5 years (range, 26–71); most patients had an Eastern 
Cooperative Oncology Group performance status of 
0 (88%), a primary single lesion (80%), and invasive 
ductal histology (83%). Of the 60 patients enrolled in the 

C
el

l D
en

si
ty

 (c
el

ls
/m

m
2 )

Total

5000
4000
3000
2000

1000

A

Stroma Tumor

 C
el

l D
en

si
ty

 (c
el

ls
/m

m
2 )

Total

4000
3000
2000

1000

B

Stroma Tumor

 C
el

l D
en

si
ty

 (c
el

ls
/m

m
2 )

StromaTotal

150

100

50

C

Tumor

No pCR
pCR

Fig. 2 pCR based on T‑cell population and spatial localization at baseline. A  CD3+; B  CD8+; and C  CD8+/Granzyme  B+/Ki67+. Abbreviation: pCR: 
pathologic complete response
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KEYNOTE-173 study, 20 patients who were treated with 
≥ 1 dose of pembrolizumab had matched tissue samples 
available for response evaluation, mIHC, and RNA 

sequencing. Of the patients included in this analysis, a 
pCR was observed in 13 patients (65%) and the ORR was 
80% (n = 16).

Immune cell populations were quantitated as a 
function of the tissue compartment within which 
they were localized, yielding 75 immune cell/
tissue compartment pairs. Of these 75 immune cell/
tissue compartment pairs, the AUROC (95% CI) for 
discriminating pCR by baseline biomarker status did 
not cross 0.5 in six immune cell/tissue compartment 
pairs. The AUROC for discriminating pCR within the 
tumor compartment was 0.85 (95% CI 0.63–1.00) for 
 CD11c+ (macrophage and DCs), 0.76 (95% CI 0.53–0.99) 
for  CD11c+/MHCII+/CD163–/CD68– (DCs), 0.80 (95% 
CI 0.54–1.00) for  CD11c+/MHCII–/CD163–/CD68– 
(nonactivated/immature DCs), and 0.77 (95% CI 0.55–
0.99) for  CD11c+/CD163+ (M2 macrophage; Table  1). 
The CD11c/CD3 baseline ratio was 0.75 (95% CI 0.52–
0.98) in the tumor compartment, 0.44 (95% CI 0.17–0.71) 
in the stromal compartment, and 0.58 (95% CI 0.29–
0.87) in the total tumor (Table  1). Cell density trended 
higher in responders than in nonresponders across all 
immune subsets (Fig. 1). T-cell content, as measured by 
 CD3+ cell density at baseline in the tumor and stromal 
compartments and total tumor trended higher in 
responders than in nonresponders.  CD8+/Granzyme  B+/
Ki67+ also trended higher in responders compared with 
nonresponders, whereas overall  CD8+ cell density was 
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Fig. 3 CD163+/MHCII+ change from baseline detrended by baseline based on pCR and by spatial localization. Abbreviation: pCR: pathologic 
complete response

Table 2 AUROC (95% CI) for discriminating pCR and ORR based 
on  TcellinfGEP and non‑TcellinfGEP consensus signatures at 
baseline

AUROC area under the receiver operating characteristic curve; CI confidence 
interval; EMT epithelial mesenchymal transition; gMDSC granulocytic myeloid-
derived suppressor cell; mMDSC monocytic myeloid-derived suppressor cell; 
ORR objective response rate; pCR pathologic complete response; TcellinfGEP 
T-cell–inflamed gene expression profile; TGFβ transforming growth factor β
a Detrended by  TcellinfGEP

AUROC (95% CI) pCR ORR

TcellinfGEP 0.55 (0.25 to 0.85) 0.75 (0.54 to 0.96)

TcellinfGEP detrended by mMDSC 0.75 (0.51 to 0.98) 0.92 (0.78 to 1.00)

Non‑TcellinfGEP consensus  signaturea

 Angiogenesis 0.40 (0.14 to 0.65) 0.45 (0.07 to 0.83)

 gMDSC 0.41 (0.14 to 0.67) 0.20 (0.00 to 0.43)

 Glycolysis 0.60 (0.34 to 0.87) 0.39 (0.10 to 0.69)

 Hypoxia 0.37 (0.09 to 0.66) 0.14 (0.00 to 0.36)

 mMDSC 0.22 (0.00 to 0.50) 0.12 (0.00 to 0.38)

 MYC 0.75 (0.5 to 0.99) 0.66 (0.24 to 1.00)

 Proliferation 0.86 (0.68 to 1.00) 0.73 (0.35 to 1.00)

 RAS 0.20 (0.00 to 0.41) 0.22 (0.00 to 0.45)

 Stroma/EMT/TGFβ 0.22 (0.01 to 0.43) 0.28 (0.00 to 0.72)

 WNT 0.37 (0.11 to 0.64) 0.36 (0.02 to 0.70)
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comparable between responders and nonresponders in 
both the tumor and stromal compartments and in the 
total tumor (Fig.  2). After one cycle of pembrolizumab, 
the baseline detrended change from baseline in size 
of the  CD163+/MHCII+ population trended higher 
in nonresponders than in responders in the stromal 

compartment (AUROC, 0.2; 95% CI 0.0–0.42; Table  1; 
Fig. 3).

The AUROC for discriminating pCR based on 
 TcellinfGEP was 0.55 (95% CI 0.25–0.85); when detrended 
by mMDSC, this was 0.75 (95% CI 0.51–0.98; Table  2). 
The AUROC for discriminating for ORR based on 
 TcellinfGEP was 0.75 (95% CI 0.54–0.96); when detrended 
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by mMDSC, the AUROC was 0.92 (95% CI 0.78–1.00; 
Table  2). The AUROC for discriminating response was 
evaluated for each of the 10 non-TcellinfGEP consensus 
signatures after detrending by  TcellinfGEP (Table  2). 
The AUROC (95% CI) for discriminating pCR based on 
proliferation, RAS, and stroma/EMT/TGFβ signatures 
and the AUROC (95% CI) for discriminating ORR based 

on gMDSC, hypoxia, mMDSC, and RAS signatures 
did not cross 0.5 (Table  2).  TcellinfGEP expression 
trended higher in responders than in nonresponders 
when evaluating pCR and ORR. Expression of gMDSC, 
hypoxia, mMDSC, RAS, stroma/EMT/TNFβ, and WNT 
trended lower in responders than in nonresponders; 
MYC and proliferation trended higher in responders 
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than in nonresponders (Fig. 4). For patient-level response 
after one cycle of pembrolizumab, glycolysis and hypoxia 
signatures change from baseline after detrending by 
baseline were lower in responders as assessed by ORR 
(Fig. 5).

Discussion
In this exploratory analysis of patients with newly 
diagnosed early-stage TNBC who received neoadjuvant 
pembrolizumab plus chemotherapy in KEYNOTE-173, 
the strongest correlation of response was observed 
with immune subsets at baseline within the tumor 
compartment. Myeloid cell populations demonstrated 
multiple positive correlations with response. T-cell 
population correlations with response were relatively 
weak, although a stronger correlation was observed 
in one  CD8+ subset.  TcellinfGEP expression trended 
higher in responders than in nonresponders (assessed 
by pCR), especially when detrended by mMDSC. The 
non-TcellinfGEP signatures at baseline detrended by 
 TcellinfGEP were mostly consistent with the hypothesized 
direction in responders versus nonresponders assessed 
by both pCR and ORR, although slightly better AUROC 
was observed when evaluating ORR compared with pCR. 
Upon detrending from baseline, change with treatment 
in the  CD163+/MHCII+ (DC3) population in the stromal 
compartment was the only immune subset for which the 
AUROC did not cross 0.5.

Use of PD-(L)1 inhibitors for the treatment of early-
stage TNBC is supported by a growing body of evidence. 
The addition of pembrolizumab to neoadjuvant 
chemotherapy significantly improved pCR compared 
with standard chemotherapy in patients with early-
stage high-risk TNBC across multiple clinical studies, 
including the randomized phase 3 KEYNOTE-522 
study [12, 13, 18, 31]. In the phase 3 IMpassion031 
study, neoadjuvant therapy with the PD-L1 inhibitor 
atezolizumab plus chemotherapy compared with 
chemotherapy also significantly improved pCR rates 
[15]. Neoadjuvant therapy with durvalumab plus 
chemotherapy and combination therapy with the PD-1 
inhibitor nivolumab plus the cytotoxic T-lymphocyte–
associated protein 4 inhibitor ipilimumab have also 
demonstrated improvement in survival and pCR, 
respectively, in smaller phase 2 studies [14, 16].

Similar to the present findings, higher levels of  CD8+, 
 TcellinfGEP, and the glycolysis signature were associated 
with response to pembrolizumab plus chemotherapy 
in exploratory analyses of the KEYNOTE-086 study 
of patients with metastatic TNBC [19, 20]. In this 
study, immune cell density trended higher in the tumor 
compartment regardless of the immune subset for 
responders. The only immune subset that trended 

higher in the stroma and in the negative direction was 
 CD163+/MHCII+. It is possible that suppressive or 
tolerizing myeloid populations may show an unexpected 
sensitivity to pembrolizumab plus chemotherapy in this 
setting, yielding a better clinical response. Notably, the 
higher pre-treatment myeloid populations within the 
tumor compartment associated with response was also 
part of the  TcellinfGEP signature and activated  CD8+ 
T-cell subset analysis. The higher pre-treatment myeloid 
population may have also contributed to the trend of 
higher cell density in the tumor compartment regardless 
of response. A previous study found highest cell densities 
in the stroma compared with tumor compartments in 
TNBC, suggesting that pembrolizumab may exhibit 
selectivity in its action within the tumor compartment 
[32]. Presence of CD8 T cells distinctly located at the 
invasive tumor margin have also been associated with 
response to pembrolizumab therapy [9].

This analysis used the mIHC technique to characterize 
the TME and evaluate immune subsets that may be 
predictive of response to neoadjuvant pembrolizumab 
plus chemotherapy in TNBC. Currently, limited data 
exist on the evaluation of multiple biomarkers to define 
immune subsets by spatial localization in patients treated 
with a PD-(L)1 inhibitor plus chemotherapy. These 
analyses provide insight into the tumor heterogeneity 
of TNBC and the effects of one cycle of neoadjuvant 
pembrolizumab on immune subsets and gene expression. 
The key limitations of this study include the lack of 
a control group, exploratory nature of the analysis, 
and small sample size, which preclude definitive 
conclusions regarding the value of these biomarkers 
in predicting response to neoadjuvant pembrolizumab 
plus chemotherapy in early-stage high-risk TNBC. 
Additionally, the scalability of assessing immune subsets 
as biomarkers using mIHC remains a challenge; efforts to 
make these analyses scalable for implementation in the 
clinical setting are still needed.

Overall, the molecular characteristics most strongly 
associated with response included higher immune 
cell densities in the tumor compartment. The TME 
characteristics identified in this study are hypothesis 
generating and require further validation in larger 
studies.
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