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Abstract 

Background  Neoadjuvant chemotherapy (NACT) is the standard-of-care treatment for patients with locally 
advanced breast cancer (LABC), providing crucial benefits in tumor downstaging. Clinical parameters, such as molecu-
lar subtypes, influence the therapeutic impact of NACT. Moreover, severe adverse events delay the treatment process 
and reduce the effectiveness of therapy. Although metabolic changes during cancer treatment are crucial determi-
nant factors in therapeutic responses and toxicities, related clinical research remains limited.

Methods  One hundred paired blood samples were collected from 50 patients with LABC before and after a com-
plete NACT treatment cycle. Untargeted metabolomics was used by liquid chromatography-mass spectrometry (LC–
MS) to investigate the relationship between dynamically changing metabolites in serum and the responses and tox-
icities of NACT.

Results  Firstly, we observed significant alterations in serum metabolite levels pre- and post-NACT, with a pre-
dominant enrichment in the sphingolipid and amino acid metabolism pathways. Second, pre-treatment serum 
metabolites successfully predicted the therapeutic response and hematotoxicities during NACT. In particular, molecu-
lar subtype variations in favorable treatment responses are linked to acyl carnitine levels. Finally, we discovered 
that the therapeutic effects of NACT could be attributed to essential amino acid metabolism.

Conclusion  This study elucidated the dynamic changes in metabolism during NACT treatment, providing a possibil-
ity for developing responsive metabolic signatures for personalized NACT treatment.
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Introduction
Breast cancer is the most commonly diagnosed can-
cer and the leading cause of cancer-related death 
among women worldwide, with its incidence expected 
to increase significantly over the next two decades [1]. 
Owing to geographic and socioeconomic variations, 
approximately 5%–40% of patients are diagnosed with 
locally advanced breast cancer (LABC) at the first visit, 
which has a worse prognosis than early breast cancer 
due to a higher likelihood of local recurrence and distant 
metastasis after surgery [2–4]. Furthermore, LABC is 
defined here as breast cancer confined to the breast and 
local lymph nodes without distant metastasis, includ-
ing stages IIB and IIIA–C. Neoadjuvant chemotherapy 
(NACT) is crucial in the initial treatment of LABC as it 
reduces tumor burden and increases the rate of breast-
conserving surgery [5]. Consequently, NACT plus sur-
gery was considered the standard treatment for LABC. 
However, patients showed significant variability in 
response to NACT, highlighting the urgent need for per-
sonalized treatment strategies. Clinical statistics showed 
that only 20%–30% of patients with LABC can achieve 
pCR [6, 7]. In clinical practice, preoperative examina-
tions, including needle biopsy, immunohistochemistry, 
ultrasound, mammography, and magnetic resonance 
imaging, have been employed to formulate NACT plans 
and assess efficacy [8]. However, these techniques fail to 
provide reliable assessments, impeding the provision of 
individualized NACT therapy for patients with LABC.

The treatment response of patients with LABC to 
NACT depends on many genetic and clinical factors. 
During NACT treatment, patients with LABC may 
experience various adverse effects, including anemia, 
leukopenia, and thrombocytopenia [9, 10]. Chemo-
therapy-induced hematotoxicity leads to cessation of 
treatment in patients who cannot tolerate it. Hence, iden-
tifying early predictive markers for NACT treatment is 
imperative, especially those capable of predicting drug 
response and toxicities before treatment, to screen sen-
sitive populations and minimize adverse effects, thereby 
enhancing patient benefits.

Molecular subtypes of breast cancer are crucial to 
the efficacy of NACT. The pCR rate varied among 
subtypes, with the hormone receptor (HR)-positive 
human epidermal growth factor receptor 2 (HER2)-
negative subtype (luminal type) showing significantly 
lower rates than the HER2-positive and triple-negative 
subtypes (collectively known as non-luminal type) [6, 
7]. However, it remains unclear why a subtype-spe-
cific difference exists. Furthermore, variations in pCR 
rates among patients with HER2-positive LABC may 
be caused by variables such as the degree of HER2 

amplification and whether the regimen included pertu-
zumab [11, 12]. Therefore, the clinical results of NACT 
treatment for patients with LABC are influenced by 
many important factors.

Metabolomics encompasses the comprehensive 
measurement of metabolites within biological sys-
tems, offering a molecular understanding of patho-
genic characteristics [13, 14]. It is widely acknowledged 
that metabolic instability is vital in the development 
of breast cancer, including aberrant glycolysis, choline 
metabolism, glutamine metabolism, lipid biosynthe-
sis, tricarboxylic acid cycle, pentose phosphate path-
way, and fatty acid metabolism [15–17]. Nonetheless, 
studies on the reactive metabolic traits of NACT are 
limited. Although several studies have reported meta-
bolic changes in patients with breast cancer undergoing 
chemotherapy [18–20], clinical cohort studies on the 
metabolomics of patients with LABC receiving NACT 
treatment are rather limited [21, 22].

Therefore, this study conducted an untargeted metab-
olomic analysis of a clinical cohort of patients with 
LABC to determine the metabolic characteristics of 
NACT in patients with breast cancer. Here, we exam-
ined 100 serum samples from 50 patients with LABC to 
identify sensitive metabolic characteristics connected 
to NACT treatment both before and after. In our small-
scale clinical cohort, the distribution of breast cancer 
subtypes was as follows: 19 patients had luminal type, 
20 patients were HER2-positive, and 11 patients were 
triple-negative. A total of 12 patients achieved pCR 
after NACT treatment. Pathological tests of postopera-
tive specimens in patients with NACT were performed 
to determine the Miller and Payne (MP) grade [23]. 
Based on the prognostic potential of the MP grading 
system, we defined a responsive (R) group (MP grades 
4–5) and a non-responsive (NR) group (MP grades 
1–3) [24, 25]. We further investigated the connection 
between serum metabolic profiles and favorable thera-
peutic responses. In particular, we discovered a corre-
lation between the molecular subtype difference in R 
to NACT and the levels of acylcarnitines. Finally, we 
compared the metabolic changes and clinical outcomes 
before and after complete treatment with NACT, 
revealing significant differences in essential amino acid 
metabolism between the R and NR patients. In con-
clusion, our research findings have unveiled the meta-
bolic dynamics of NACT treatment, offering enormous 
potential for guiding personalized NACT therapy based 
on serum metabolic features.
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Methods
Sample collection
This study protocol has been approved by the Ethics 
Committee of the Second Affiliated Hospital of Zhejiang 
University (SAHZU), Hangzhou, China. From September 
2022 to December 2023, serum samples (n = 100) from 
50 patients with LABC were collected from the Clinical 
Laboratory of SAHZU. Eligible patients were all females 
aged between 35 and 75 years old, diagnosed with clini-
cal T2-4 and N+ breast cancer, including IIB, and IIIA-
C stage. The inclusion criteria included pathology of 
tumor and lymph node suggested invasive ductal carci-
noma; imaging report indicated the maximum diameter 
of the tumor ≥ 2  cm; performed the complete course of 
chemotherapy. The exclusion criteria included as fol-
lows: (1) history of other malignant tumors; (2) special 
types of breast cancer (e.g., papillary carcinoma, squa-
mous cell carcinoma); (3) severe liver and kidney diseases 
leading to abnormal liver and kidney function (aspartate 
aminotransferase, alanine aminotransferase, and alka-
line phosphatase levels > 3 times the upper limit of nor-
mal; creatinine concentration exceed the upper limit 
of normal). All enrolled patients have signed informed 
consent forms. All patients received 4 cycles of epiru-
bicin combined with cyclophosphamide treatment fol-
lowed by 4 cycles of paclitaxel treatment or 6 cycles of 
paclitaxel combined with platinum drug treatment. All 
HER2-positive patients received dual-targeted therapy 
with trastuzumab combined with pertuzumab. In this 
study, according to postoperative pathological results, 
an MP grade of 5 was considered as pCR, while grades 
of 4–5 were considered as the response (R) to NACT 
treatment. Serum samples for each patient were collected 
at two-time points: before the first chemotherapy and 
before surgery. For serum collection, all participants were 
required to fast overnight and collect 5 mL of peripheral 
venous blood in the morning.

Reagents and sample preparation
Water (H2O) was obtained from a Milli-Q water purifi-
cation apparatus (Millipore, Milford, MA, USA). Liquid 
chromatography-mass spectrometry (LC − MS) grade 
methanol (MeOH) and acetonitrile (ACN) were bought 
from Merck KGaA (Darmstadt, Germany) and chro-
matographic grade formic acid (FA) was obtained from 
Fluka (Muskegon, MI, USA). Three isotopically labeled 
chemical standards of metabolites were purchased 
from MedChemExpress (Shanghai, China). Serum sam-
ples (50 µL) were extracted using a 200 μL mixture of 
methanol:acetonitrile (2:1) containing internal standards 
(d3-leucine, d3-palmitoyl carnitine, and d4-cholic acid). 
The samples were incubated at − 20 ℃ for 1 h after vor-
texing for 30 s and sonicated for 1 min. Then, the samples 

were centrifuged at 14,000  rpm for 15  min at 4℃ to 
remove protein precipitate. Next, vacuum-dried 100 μL 
of supernatant was stored at − 80 ℃. Prior to LC–MS 
analysis, drained samples were dissolved with 100 μL 
of 20% acetonitrile water, centrifuged at 14,000  rpm for 
15 min, and then took the supernatant into HPLC vials.

LC − MS analysis
Analyses were performed using an Acquity UPLC sys-
tem (Waters, USA) connected to a TripleTOF 6600 mass 
spectrometer (AB SCIEX, USA). A UPLC HSS T3 col-
umn (1.8  μm; 100  mm in length × 2.1  mm in diameter) 
was used for separation with the column temperature 
maintained at 25  °C. Mobile phase A was water with 
0.1% FA, and B was ACN with 0.1% FA. The flow rate 
was 0.35  mL/min and the gradient was set as follows: 
0–1  min: 1% B;1–18  min: 1% B to 50% B; 18–18.5  min: 
50% B to 100% B; 18.5–22.5 min: 100% B; 22.5–23 min: 
100% B to 1% B; 23–26 min: 1% B. The injection volume 
was 5 μL. Random analysis was performed on all samples 
during the data collection process. The quality control 
(QC) sample was prepared by combining aliquots of all 
subject samples. The QC sample was injected every 10 
samples.

The ESI source conditions on TripleTOF were as fol-
lows: Gas Source 1 (GS1) was set at 60 psi, Gas Source 
2 (GS2) was set at 60 psi, Curtain Gas (CUR) was set at 
30 psi, Source Temperature was 600  °C, and IonSpray 
Voltage Floating (ISVF) was set at 5500 V in positive ion 
mode. The instrument was configured to scan and collect 
the m/z range of 60–1000 Da through TOF MS, and the 
m/z range of 25–1000 Da for product ion scanning. The 
accumulation time for TOF mass spectrometry scans was 
set at 0.20 s/spectra, while the product ion scan was set 
at 0.05  s/spectra. Acquired product ion scan was used 
Information Dependent Acquisition (IDA) with high 
sensitivity mode. In the full scan experiment, IDA trig-
gers MS/MS based on a set of user-input standards. The 
unit resolution for selecting precursor ions, with collision 
energy (CE) fixed at 35 ± 15 eV. The declustering potential 
(DP) was set as 60 V [26].

Metabolomics data processing
The metabolomics data processing method follows the 
protocols outlined in a previous publication [27, 28]. 
The original MS data (wiff.scan) files were converted to 
mzXML format using ProteoWizard MSConvert (ver-
sion 3.0) [29], and MA-DIAL (version 4.9) [30] was 
utilized for peak detection, retention time correction, 
and peak alignment. The parameters set for MS-DIAL 
processing are as follows: peak detection quality accu-
racy = 10  ppm; peak width c = (5,30); snthresh = 3; min-
frac = 0.5. For each metabolic feature, intensities of more 
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than 5 standard deviations were considered outliers and 
set as missing values. Data with missing values exceed-
ing 70% will be removed. The remaining missing values 
are calculated and filled using the k-Nearest Neighbors 
(KNN) algorithm [31]. Metabolite peaks with relative 
standard deviations (RSDs) less than 30% in QC samples 
were used for subsequent analysis.

Metabolite identification was performed using the pre-
viously published software MetDNA2 (http://​metdna.​
zhulab.​cn/)​(28). In brief, this tool utilized an inter-
nal metabolite spectral library to annotate metabolites 
by matching accurate mass, retention time, and MS/
MS similarity and categorized them into metabolomics 
standards initiative (MSI) level 1 and MSI level 2 based 
on the degree of matching. Metabolites identified by 
matching with external public metabolite libraries and 
lipid spectral libraries were considered as MSI level 3 
[32]. The MS/MS similarity was calculated using the dot 
product algorithm, with the cut-off point set at 0.8. All 
metabolite and lipid identification values can be found 
in Additional file 1. Three internal standards were added 
to each sample to monitor the reproducibility of the LC–
MS data acquisition process, with RSDs of peak areas 
being 7.7%, 7.2% and 4.0%, respectively (Additional file 6: 
Fig. S1a). After data normalization, the median RSDs of 
metabolites determined by reversed-phase liquid chro-
matography-mass spectrometry (RPLC-MS) were 12.5% 
(Additional file  6: Fig.  S1b). The reproducibility of QC 
samples was evaluated using principal component analy-
sis (PCA), and the results showed that QC samples clus-
tered closely together in the PCA plot (Additional file 6: 
Fig.  S1c). The above results indicated that this method 
has good data quality and excellent reproducibility.

Statistical analyses
The statistical analyses were performed using IBM SPSS 
Statistics (version 24.0) and R (version 4.3.2) [33]. Multi-
variate analyses were performed by R package “mixOm-
ics” (version 6.26.0), including supervised partial least 
squares discriminant analysis (PLS-DA), from which var-
iable projected importance (VIP) values for each metabo-
lite were obtained. The univariate analysis assessed the 
statistical significance (P value) and fold change (FC) 
between two groups for each metabolite based on the 
two-sided Wilcoxon test. The criteria for identifying dif-
ferentially expressed metabolites were P value < 0.05, 
FC > 1.5 or < 0.66 and VIP > 1. The volcano plot was cre-
ated using the R package “ggplot2”. Pathway enrichment 
analysis utilized MetaboAnalyst (https://​www.​metab​
oanal​yst.​ca/)​(34), embedded with the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathway database 
[35]. After normalizing the data by z-scores, hierarchical 

clustering analysis was generated using the R package 
“pheatmap”.

Using the R package "glmnet" (version 4.0.2) for fea-
ture selection via adaptive lasso [36]. At first, all metabo-
lites and clinical covariates (age, BMI, Ki-67, and stage) 
were graded and used for the selection of predictors. The 
adaptive weight vector ω was calculated using the ini-
tial estimates of the coefficients obtained from the main 
tenfold cross-validation, used as a penalty factor in the 
lasso regression subsequently. The optimal lambda was 
chosen by a tenfold cross-validation. After feature selec-
tion, a binary logistic regression model was constructed 
using SPSS to predict the probability of R to NACT using 
baseline serum metabolites. Additionally, considering 
the relatively small sample size, we limited the number of 
predictive factors in the final model to four. The logical 
model for predicting the chances of R using four predic-
tor factors culminated in a formula. Randomly selected 
60% of the patients from the dataset as the training data 
to establish a predictive model, with the remaining 40% 
of patients as the validation data. The random sampling 
was repeated 1000 times to build and validate the model. 
Similarly, SPSS was used to plot receiver operating char-
acteristic (ROC) curves and calculate the area under the 
curve (AUC) value and 95% confidence interval (CI).

The two-way ANOVA analysis was conducted using 
the R function “aov”. Metabolites with P < 0.05 of NACT, 
R, and interaction dimensions were selected separately. 
Used non-parametric Wilcoxon rank-sum test to com-
pare the differences in metabolite levels between R and 
NR patients. To calculate the correlation between amino 
acids, the R package “Hmisc” was used for Pearson 
correlation.

Results
Serum metabolic traits in response to NACT in patients 
with LABC
This study recruited 50 patients diagnosed with clinical 
T2-4 and N + breast cancer from the Second Affiliated 
Hospital Zhejiang University School of Medicine, Hang-
zhou, China. All enrolled patients received conventional 
NACT regimens, followed by complete breast resec-
tion or preservation surgery. Additional file  6: Table  S1 
includes detailed information about the clinical cohort. 
To study NACT’s impact on serum metabolic profiles, 
we collected two blood samples from each patient with 
breast cancer before the first chemotherapy and surgery 
(Fig. 1a).

Serum samples from 50 patients with LABC under-
went untargeted metabolomics analysis using RPLC-MS. 
In total, 265 metabolites were identified based on the 
metabolomics standards initiative [32] (Fig. 1b and Addi-
tional file 1). Unsupervised principal component analysis 

http://metdna.zhulab.cn/)(28
http://metdna.zhulab.cn/)(28
https://www.metaboanalyst.ca/)(34
https://www.metaboanalyst.ca/)(34
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revealed significant differences in the metabolic profiles 
of serum samples between two-time points, indicating 
metabolic changes following the completion of NACT 
(Fig.  1c). Furthermore, we used univariate and multi-
variate analyses to identify metabolites associated with 
NACT treatment, revealing 60 metabolites exhibiting 
significant changes (P < 0.05, FC > 1.5 or < 0.66, VIP > 1; 
Additional file 2). Among these, the volcano plot revealed 
that 36 metabolites increased and 24 metabolites 
decreased following NACT treatment (Fig. 1d). The met-
abolic pathway enrichment analysis results demonstrated 
that the changed metabolites were enriched in sphin-
golipid metabolism and amino acid metabolism, such as 
phenylalanine, tyrosine, and tryptophan biosynthesis; 

arginine biosynthesis; and valine, leucine, and isoleu-
cine biosynthesis (Fig. 1e). Through further analysis, we 
listed the top 20 differential metabolites that increased 
and decreased after NACT treatment (Figs. 1f–g). Over-
all, comprehensive metabolomics has demonstrated that 
NACT treatment induces significant changes in the met-
abolic profile of patients with LABC during the NACT 
treatment process.

Metabolic traits before treatment predict NACT‑induced 
hematologic toxicity
Patients undergoing NACT frequently suffer from hema-
tological toxicity, which can lead to treatment inter-
ruption in patients unable to tolerate it and reduce the 

Fig. 1  Serum metabolic characteristics of LABC patients in response to NACT. a Clinical design overview of metabolomics study. b Number 
of identified metabolites in the serum sample and the distribution of their chemical categories. c Principal component analysis (PCA) reveals 
significant changes in metabolic profiles before and after NACT treatment. d Volcano plot of metabolites significantly associated with NACT 
treatment (P value < 0.05, FC > 1.5 or < 0.66). Aquamarine dots (n = 24) and orange dots (n = 36) represent metabolites that were increased 
and decreased, respectively, before and after NACT treatment. The grey dots represent unchanged metabolites. e Pathway enrichment analysis 
of metabolites (n = 60) significantly altered before and after NCAT (Hypergeometric test; P < 0.05). The pathway enrichment was performed using 
MetaboAnalyst. f, g Heatmaps show the top 20 decreased (f ) and top 20 increased (g) metabolites associated with NACT treatment
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therapeutic efficacy of NACT. Subsequently, we inves-
tigated the correlation between metabolite levels before 
treatment and usual hematological toxicities, encom-
passing the nadir levels of hemoglobin (Hb), white blood 
cells (WBC), platelets (PLT), and neutrophils (NEUT) 
during treatment. We found that 53 metabolites in dif-
ferent categories were significantly associated with at 
least one hematological toxicity (P < 0.05; Fig.  2a and 

Additional file 3). Pathway enrichment analysis revealed 
significant enrichment of metabolites associated with 
WBC and NEUT in similar metabolic pathways, such 
as phenylalanine, tyrosine, and tryptophan biosynthesis; 
as well as D-amino acid metabolism (Fig.  2b). Further-
more, the metabolites associated with Hb and PLT were 
significantly enriched in the pyrimidine metabolic path-
way (Fig.  2b). We exhibited examples of the correlation 

Fig. 2  Pre-therapeutic metabolic traits predict the hematologic toxicities caused by NACT. a Significant correlation between the lowest counts 
of the four cell types associated with hematological toxicity and the pre-treatment serum metabolites. (Pearson correlation; two-sided Student’s 
t test P < 0.05). Hb, hemoglobin; WBC, white blood cells; PLT, platelets; NEUT, neutrophils. b Pathway enrichment analyses of hematologic toxicity 
associated metabolites (Hypergeometric test; P < 0.05). c Four examples of metabolites and their relevance to hematological toxicity. (Pearson 
correlation; two-sided Student’s t test P < 0.05). Neu5Ac, N-Acetylneuraminic acid. Error bands represent 95% confidence intervals. d Multiple linear 
regression models constructed from different serum baseline metabolites to predict nadir cell counts and hematological toxicity during NACT. 
(Pearson correlation; two-sided Student’s t test P < 0.05). Error bands represent 95% confidence intervals. Supplementary Tables 3–6 provide details 
of the prediction models
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between specific metabolites and each hematological tox-
icity in Fig.  2c, including uridine, norleucine, N-acetyl-
neuraminic acid, and 5-oxo-D-proline. To further 
validate the relationship between pre-treatment metabo-
lites and hematological toxicity, we predicted each type 
of hematotoxicity using its respective correlated metab-
olites. We applied all relevant metabolites to a multiple 
linear regression (MLR) model to construct Hb predic-
tive models. We first selected key metabolites using lasso 
regression for WBC, PLT, and NEUT and then con-
structed MLR models. Consequently, we selected 6, 13, 7, 
and 13 metabolites to predict Hb, WBC, PLT, and NEUT 
values, respectively (Fig. 2d and Additional file 6: Tables 
S2–S5). Each generated predictive model demonstrated a 
significant positive correlation between its predicted val-
ues and the clinically measured results (Fig. 2d). In con-
clusion, we suggest that pre-treatment metabolic traits 
can successfully predict the occurrence of hematological 
toxicity adverse events during NACT treatment, further 
demonstrating the pivotal role of serum metabolic pro-
files in NACT-induced toxicities.

Key metabolites predict the therapeutic response of NACT​
After completing NACT treatment, about 20% to 30% of 
patients achieved pCR and demonstrated better progno-
ses than those who did not achieve pCR [6, 7]. Therefore, 
early prediction of the response to NACT treatment is 
crucial. To investigate the metabolic profile associated 
with drug response, we analyzed metabolomics data 
from baseline levels in R (n = 18) and NR (n = 32) patients 
before initiating NACT. There were 15 metabolites linked 
to improved therapeutic response in the initial analy-
sis (P < 0.05; Fig.  3a). Pathway analysis showed signifi-
cant enrichment of these metabolites in phenylalanine, 
tyrosine, and tryptophan biosynthesis; phenylalanine 
metabolism; nicotinate and nicotinamide metabolism; 
and valine, leucine, and isoleucine biosynthesis (Fig. 3b). 
After that, we created a logistic regression model to 
predict the chances of R in patients with LABC before 
receiving NACT after using lasso regression to select key 
metabolites (Fig. 3c). For the prediction model, the clini-
cal covariate of breast cancer subtype and three metabo-
lites, such as leucine, phosphatidylcholine (PC) (36:3), 
and hypoxanthine, were ultimately selected (Fig. 3d and 
Additional file 6: Table S6). With a diagnostic specificity 
of 91% and sensitivity of 72%, the expected cutoff value is 
0.50 (Fig.  3e). Good discriminant performance was also 
confirmed by the receiver operating characteristic curve 
(area under the curve = 0.91; 95% confidence interval: 
0.84–0.99; Fig.  3f ). Notably, this model could be used 
to predict all MP grades after NACT in patients with 
LABC (Additional file  6: Fig.  S2a). These results indi-
cated significant differences in pre-treatment metabolic 

characteristics among patients with LABC who have 
received NACT treatment, and the pre-treatment meta-
bolic traits might identify individuals who are sensitive to 
NACT treatment, helping predict a favorable therapeutic 
response.

Acyl carnitines are associated with a better therapeutic 
response in patients with non‑luminal breast cancer
Previous studies have reported that the difference in pCR 
rates after NACT was related to the breast cancer sub-
type, with HR-positive HER2-negative, also known as 
luminal, being a risk factor [6]. In our study, the treat-
ment response rate was significantly lower in patients 
with the luminal subtype than in those with the non-
luminal subtype (P = 0.08; Chi-square test; Fig.  4a). We 
then investigated the disparities in metabolic charac-
teristics at baseline associated with treatment response 
induced by NACT among breast cancer subtypes.

The comparative analysis of metabolites in patients 
with luminal and non-luminal subtypes responding to 
treatment showed that 21 metabolites were related to 
subtype and therapeutic response (P < 0.05). Among 
these, 10 metabolites showed no difference across all 
subtypes when the treatment response was not stratified 
(Fig. 4b), suggesting that these metabolites are subtype-
specific only to R patients. Further examination revealed 
significant associations between four carnitines (Cars 
(3:0), (8:1), (10:3), and (18:0)) and subtype-specific differ-
ences in the R patients. Interestingly, the total serum car-
nitine levels of 20 carnitines detected in R patients with 
luminal subtypes were significantly higher than those in 
patients with non-luminal subtypes (Fig.  4c and Addi-
tional file 4). As a comparison, no subtype differences in 
total carnitine levels were observed in any patients. For 
instance, the levels of Car (18:0) were higher in R patients 
with the luminal subtype than in R patients with the non-
luminal subtype, while no difference was observed in 
all patients with comorbidities (Fig.  3d). Similar results 
regarding Cars (3:0), (8:1), and (10:3) can be found in 
Additional file 6: Fig. S2b. Additional file 6: Fig. S3 shows 
a comparison of the individual and total carnitine lev-
els among the four groups (luminal type R, luminal type 
NR, non-luminal type R, and non-luminal type NR). 
In addition, subsequent analyses of carnitine based on 
unsaturation and carbon number showed more sub-
type-specific variations. Saturated short- and medium-
chain carnitine (C < 5 and 5 ≤ C ≤ 12) did not reveal any 
subtype differences, whereas saturated long-chain car-
nitine (C > 12) in R patients showed substantial differ-
ences between luminal and non-luminal types (Fig.  3e). 
Furthermore, medium-chain unsaturated carnitine with 
one and three carbon–carbon bonds held subtype differ-
ences in R patients before NACT. Overall, these findings 



Page 8 of 15Fang et al. Breast Cancer Research            (2025) 27:2 

unequivocally suggest that variations in metabolism 
among subtypes are linked to post-NACT therapeutic 
response.

Increased essential amino acids are beneficial to R in NACT​
Using a two-way ANOVA analysis, 60 and 15 metabo-
lites were identified to be associated with NACT and R 
status, respectively. In addition, we found that 24 metab-
olites exhibited significant interactions with NACT 
and R states (within the red circles; Fig.  5a). Pathway 

enrichment analysis of these metabolites revealed a 
notable enrichment of pathways related to amino acids 
(Fig.  5b). Next, we examined how amino acids coordi-
nate their metabolism in R and NR patients before and 
after NACT treatment. According to Pearson’s correla-
tion analysis, seven positively associated amino acids, 
five of which were essential, were found in R patients. 
Nevertheless, among the NR patients, there was only one 
positive correlation (Fig. 5c, Additional files 5, 6). Before 
NACT treatment, further examination of total, essential, 

Fig. 3  Predictive model for therapeutic efficacy based on key serum metabolites. a Heatmap revealed baseline metabolites significantly correlated 
with response (R) to NACT (P < 0.05; Two-sided Student T test). b Pathway enrichment analysis (P < 0.05; Hypergeometric test). c Lasso regression 
for the selection of key metabolites. d Selected key metabolites and breast cancer subtype for the logistic regression model to predict the chances 
of R. e The sensitivity and specificity of the prediction model with a risk score of 0.5 (R: n = 18; NR: n = 32). f Receiver operating characteristic curve 
of the logistic regression model
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and non-essential amino acids revealed no distinctions 
between R and NR patients at baseline. (Fig.  5d). Nota-
bly, R patients demonstrated significantly higher levels of 
total and essential amino acids after completing NACT 
than NR patients. However, no variations were observed 
in the levels of non-essential amino acids (Fig.  5e). 
Comparing individual amino acid revealed higher lev-
els of most essential amino acids (isoleucine, valine, 
methionine, phenylalanine, and threonine) in R patients 
than in NR patients. However, for non-essential amino 

acids, no significant difference was observed between 
the two groups (Fig.  5f ). In addition, the odds ratio for 
each amino acid was determined using a logistic regres-
sion model, and their contributions to the R status were 
examined (Fig.  5g). The results demonstrated that the 
odd ratios of glutamine, isoleucine, lysine, methionine, 
tryptophan, threonine, and valine are higher than 1, sug-
gesting that R in NACT benefits from increased levels of 
these amino acids. In conclusion, amino acids are critical 
metabolic features that reflect the response of patients 

Fig. 4  Acyl carnitines are associated with subtype differences in R status following NACT. a Non-Luminal patients had a significantly higher chance 
of achieving R than Luminal (P = 0.08; χ.2 test). b Venn plot showed the number of metabolites associated with the subtype in R patients (red) and all 
patients (blue). c, d All patients (Luminal = 19, non-Luminal = 31) and R patients (Luminal = 4, non-Luminal = 14) total carnitine and Car (18:0) levels. 
e Subtype disparity in carnitine levels associated with R status after NACT. (nd, not detected; **, P < 0.01; *, P < 0.05; ns, not significant; Two-sided 
Wilcoxon test)
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with LABC to NACT treatment and R status. In particu-
lar, baseline levels of essential amino acids did not differ 
before NACT, but after NACT, patient serum samples 
significantly increased in these amino acids. These data 
also suggest that dietary and nutritional interventions, 
especially supplementation with essential amino acids 
during NACT, may positively contribute to tumor regres-
sion in patients with LABC.

Discussion
This study characterized the serum metabolic profile of 
patients with LABC receiving NACT and identified reac-
tive metabolic features associated with the treatment 

process and therapeutic response. Our preliminary analy-
sis revealed significant differences in metabolic reactions 
before and after NACT. Amino acid metabolism path-
ways, including phenylalanine, tyrosine, and tryptophan 
biosynthesis; arginine biosynthesis; and valine, leucine, 
and isoleucine biosynthesis, were substantially impacted 
by NACT treatment. We discovered that following 
NACT treatment, metabolites of tryptophan metabo-
lism, including tryptophan, indole-3-propionic acid, and 
indole-3-lactic acid, decreased (Additional file 6: Fig. S5). 
Wang et  al. suggested that irinotecan-induced intesti-
nal injury in mice led to the upregulation of tryptophan 
metabolism [37]. However, Ahmed et  al. reported that 

Fig. 5  Achieving R to NACT may be attributed to elevated essential amino acids. a Differentially changed metabolites associated with NACT 
treatment and R status, and the combination of both using a two-way ANOVA analysis (P < 0.05). b Pathway enrichment analysis of metabolites 
related to both NACT treatment and R status (Hypergeometric test; P < 0.05). c Metabolic correlation between two amino acids in R and NR patients 
(Pearson correlation; r > 0.50 and two-sided Student’s t test P < 0.05). d, e Amino acid levels in serum samples from R (n = 18) and NR (n = 32) patients 
before and after NACT treatment: c, before NACT at baseline; d, after NACT (Two-sided Wilcoxon test; ns, not significant; ***, P < 0.001; **, P < 0.01). 
f Amino acid levels in serum samples from R (n = 18) and NR (n = 32) patients after NACT treatment. Data normalized to baseline levels (Two-sided 
Wilcoxon test). g Odd ratios of amino acids related to R status after NACT (two-sided z-test of logistic regression; ns, not significant). R (n = 18) 
and NR (n = 32). Error bars represent 95% confidence intervals
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elevated tryptophan metabolite levels in tumor cells 
enhance tumor malignancy through aryl hydrocarbon 
receptor activation [38]. In our cohort of patients with 
LABC, the reduction in tryptophan metabolites discov-
ered indicates a more significant role for the latter. More-
over, the sphingolipid metabolism pathway significantly 
impacted the response to NACT. We found that the 
metabolites of sphingolipid metabolism, such as sphingo-
sine, sphingosine-1-phosphate (S1P), and ethanolamine 
phosphate, were exclusively reduced after NACT (Addi-
tional file 6: Fig. S6a). Previous clinical trials and mouse 
model studies on head and neck cancer have confirmed 
a significant alteration in the serum levels of C18 cera-
mide associated with doxorubicin-related chemotherapy 
drug treatment [39, 40]. Furthermore, the abnormal 
upregulation of sphingolipid metabolism leading to the 
generation of glycosylated ceramide and/or S1P resulted 
in drug resistance to chemotherapy in breast cancer and 
other tumors [41–43]. Consequently, we compared the 
levels of sphingolipid metabolites in the serum of R and 
NR patients before and after treatment. While their lev-
els decreased after NACT treatment, the levels of sphin-
gosine and S1P in NR patients were significantly higher 
than those in R patients post-NACT treatment (Addi-
tional file 6: Fig. S6b). Conversely, S1P can promote can-
cer growth and metastasis through S1PR-dependent or 
S1PR-independent signaling pathways [44, 45]. Given its 
function in controlling tumor development and mediat-
ing chemotherapy efficacy, the reduction in sphingolipid 
metabolites found in the serum of patients after NACT 
treatment and the higher levels of sphingolipid metabo-
lites in NR patients than in R patients may be explicable.

Chemotherapy often accompanies hematological 
adverse events, including anemia, leukopenia, thrombo-
cytopenia, and neutropenia, which reduce the efficacy 
of NACT treatment. Current studies on the relationship 
between serum metabolites and hematological adverse 
events are relatively limited. We successfully established 
the relationship between baseline metabolite levels and 
common hematologic toxicities, such as Hb, WBC, PLT, 
and NEUT values. We observed that metabolites asso-
ciated with WBC and NEUT were enriched in the phe-
nylalanine, tyrosine, and tryptophan biosynthesis and 
D-amino acid metabolism pathways, while those linked 
to Hb and PLT were enriched in pyrimidine metabolism. 
These results demonstrated the potential of pre-treat-
ment serum metabolomic profiles to identify individu-
als at high risk of NACT-induced hematological toxicity, 
potentially enabling personalized treatment for patients 
with LABC.

An interesting discovery of this study is the subtype 
differences in carnitine metabolism associated with the 
R status after NACT. Notably, an increasing number of 

clinical trials have shown that breast cancer subtypes sig-
nificantly contribute to variability in R status following 
NACT, with patients with non-luminal subtypes consist-
ently exhibiting lower response rates [6, 7]. We observed 
that among all R patients, the serum carnitine levels in 
patients with non-luminal breast cancer were signifi-
cantly lower than those in patients with luminal breast 
cancer. Acylcarnitines are crucial metabolic intermedi-
ates in the β-oxidation of fatty acids, serving as a pivotal 
energy source for cellular growth and proliferation [46]. 
Estrogens reduce β-oxidation by targeting carnitine pal-
mitoyltransferase [47, 48], yet the expression of estro-
gen receptors in patients with luminal breast cancer may 
competitively counteract this effect. Current research 
has reported that carnitine possesses the efficacy to miti-
gate multi-organ toxicity and systemic fatigue induced 
by chemotherapy [49, 50]. The interrelationship between 
carnitine metabolism mediated by breast cancer subtypes 
and the R status in response to NACT remains unclear. 
Our findings suggest that in NACT, carnitine supple-
mentation in patients with LABC should be vigilant, 
which may lead to reduced sensitivity to chemotherapy. 
However, more clinical and experimental studies are 
necessary.

After NACT treatment, only 20%–30% of patients with 
LABC achieved a complete pathologic response [6, 7]. 
As the state of complete pathological response cannot 
be confirmed before surgery, a pre-surgery examination 
for R status prediction is valuable for selecting follow-up 
treatment. We observed that the levels of hypoxanthine 
and PC (36:3) were significantly higher in R patients than 
in NR patients, while leucine levels were lower. And we 
successfully developed a robust predictive model for 
NACT efficacy using these three metabolites in combi-
nation with another clinical marker, molecular subtype. 
Hypoxanthine is a purine and an intermediate in the 
metabolism of adenosine, as well as in nucleic acid syn-
thesis via the salvage pathway. Hypoxanthine has long 
been established as a biomarker of hypoxia [51]. Shakar-
talla et al. identified that hypoxanthine as a novel metas-
tasis-associated metabolite in breast cancer [52] and 
another study demonstrated that plasma hypoxanthine 
could serve as a potential biomarker for the diagnosis of 
breast cancer [53]. PC (36:3) is a phosphatidylcholine in 
which the acyl groups at positions C-1 and C-2 contain 
a total of 36 carbon atoms and 3 double bonds. To date, 
no studies have explored the involvement of PC (36:3) 
in tumorigenesis and treatment. However, studies have 
shown that the metabolism of phosphatidylcholine gen-
erates lipid mediators that can modulate immune cell 
function, thereby influencing the growth, survival, pro-
liferation, and treatment resistance of cancer cells [54]. 
Leucine, together with isoleucine and valine, constitutes 
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the three essential branched-chain amino acids (BCAAs), 
which play a critical role in cellular metabolism and pro-
tein synthesis. Studies have demonstrated that BCAA 
metabolism was significantly upregulated in breast can-
cer, with BCAT1-mediated activation of mTOR driving 
mitochondrial biogenesis and enhancing mitochondrial 
function, and subsequently promotes the growth and 
colony formation of breast cancer cells [55]. However, 
some studies have reported that elevated levels of BCAAs 
can inhibit tumor growth and metastasis in breast cancer, 
suggesting that increasing dietary BCAA intake may offer 
potential therapeutic benefits in the management of the 
disease [56, 57]. Consequently, BCAAs play a dual role in 
cancer, with their effects on tumor growth or suppression 
being highly dependent on specific conditions and con-
centrations [58].

As far as leucine alone, it has a controversial role in 
hepatocellular carcinoma, whereas its predominantly 
pro-tumor effect in breast cancer has been demonstrated 
in multiple studies [59]. By activating mTORC1, leucine 
drives metabolic reprogramming that promotes glyco-
lysis and anabolism, processes associated with enhanced 
tumorigenesis and treatment resistance [60]. Xiao et  al. 
demonstrated that leucine deprivation inhibits prolif-
eration and induces apoptosis in human breast cancer 
cells through the modulation of fatty acid synthase [61]. 
Recent studies have also shown that elevated plasma leu-
cine levels induced by the microbiota were associated 
with increased tumor infiltration by polymorphonucler 
myeloid-derived suppressor cells and adverse clinical 
outcomes in patients with breast cancer [62]. Addition-
ally, Yasuhiro et al. showed that a diet high in leucine may 
promote drug resistance in breast cancer [63]. There-
fore, we speculated that leucine may influence the NACT 
treatment response. However, in our findings, a higher 
content of essential amino acids (including isoleucine, 
lysine, methionine, tryptophan, threonine, and valine) in 
the serum of patients with LABC after NACT treatment 
was positively correlated with the therapeutic response. 
Essential amino acids and their metabolites are impor-
tant in tumor biology and treatment [64]. Presently, many 
studies have reported that supplementation of essential 
amino acids enhances the efficacy of tumor treatment 
[65, 66]. These findings suggest that nutritional inter-
ventions supplemented with essential amino acids may 
improve the responsiveness of NR patients to NACT. 
However, further clinical trials are warranted to validate 
this intervention before its implementation in clinical 
practice.

The potential use of omics analysis in NACT for 
breast cancer and other cancers has been shown in 
earlier studies [18, 25, 67–70]. For example, Diaz et al. 
identified that patients with triple-negative breast 

cancer can be categorized using glycohyocholic and 
glycodeoxycholic acids based on their response to 
NACT treatment [25]. Rebecca et al. showed that mes-
enchymal subtype ovarian cancer tissues exhibited 
distinct metabolomics profiles compared with other 
subtypes, and their ascites demonstrate significant 
alterations in immune responses and signaling path-
ways [69]. Feng et  al. performed metabolomics analy-
sis in patients undergoing NACT for prostate cancer 
and identified the downregulation of key pathways in 
biosynthesis and energy metabolism, thereby inhibit-
ing tumor growth [70]. However, longitudinal analysis 
of the process before and after NACT treatment is rare 
in study design. Compared with previous studies, this 
research differs in design and technology in the follow-
ing aspects: (1) The pre- and post-treatment analyses 
conducted in this longitudinal investigation can yield 
important information about the dynamic metabolic 
profile of the NACT response in patients with LABC. 
(2) Postoperative pathological MP grading served as 
the clinical determination in this study, offering a more 
stringent and meticulous clinical assessment.

However, this study has some limitations. This study 
aimed to identify prospective metabolites that may be 
connected to the NACT treatment process and thera-
peutic response, rather than construct a clinical trial to 
anticipate the reaction to NACT, which would require 
the absolute concentrations of metabolites. Conse-
quently, our study opted for a non-targeted detection 
approach rather than a targeted quantitative meas-
urement method to compare the correlation between 
metabolites and NACT treatment. The study’s small 
sample size and the absence of detection points during 
treatment are potential limitations that require further 
analysis in larger cohorts. In addition, our methodol-
ogy solely employed RPLC without the concurrent use 
of hydrophilic interaction liquid chromatography for 
detection, which may have resulted in incomplete cov-
erage of the metabolites being identified. Furthermore, 
it is evident that this study’s pathway enrichment analy-
sis, which was based on differential metabolites in the 
circulation metabolome rather than the tissue or cel-
lular metabolome, is inadequate for determining the 
metabolic pathways that NACT treatment first altered. 
However, obtaining tissue samples directly from patient 
multiple times is highly challenging. In summary, we 
report a model based on serum non-target metabo-
lomics signatures for predicting responses and tox-
icities of NACT treatment. Furthermore, our primary 
findings demonstrated the characteristic metabolite 
changes before and after NACT treatment and pro-
vided potential benefits for the treatment of patients 
with LABC in clinical practice.
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