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Abstract
Objective  The aim of this study was to develop and validate a deep learning radiomics (DLR) model based on 
longitudinal ultrasound data and clinical features to predict pathologic complete response (pCR) after neoadjuvant 
chemotherapy (NAC) in breast cancer patients.

Methods  Between January 2018 and June 2023, 312 patients with histologically confirmed breast cancer were 
enrolled and randomly assigned to a training cohort (n = 219) and a test cohort (n = 93) in a 7:3 ratio. Next, pre-NAC 
and post-treatment 2-cycle ultrasound images were collected, and radiomics and deep learning features were 
extracted from NAC pre-treatment (Pre), post-treatment 2 cycle (Post), and Delta (pre-NAC—NAC 2 cycle) images. 
In the training cohort, to filter features, the intraclass correlation coefficient test, the Boruta algorithm, and the least 
absolute shrinkage and selection operator (LASSO) logistic regression were used. Single-modality models (Pre, 
Post, and Delta) were constructed based on five machine-learning classifiers. Finally, based on the classifier with 
the optimal predictive performance, the DLR model was constructed by combining Pre, Post, and Delta ultrasound 
features and was subsequently combined with clinical features to develop a combined model (Integrated). The 
discriminative power, predictive performance, and clinical utility of the models were further evaluated in the test 
cohort. Furthermore, patients were assigned into three subgroups, including the HR+/HER2-, HER2+, and TNBC 
subgroups, according to molecular typing to validate the predictability of the model across the different subgroups.

Results  After feature screening, 16, 13, and 10 features were selected to construct the Pre model, Post model, and 
Delta model based on the five machine learning classifiers, respectively. The three single-modality models based 
on the XGBoost classifier displayed optimal predictive performance. Meanwhile, the DLR model (AUC of 0.827) was 
superior to the single-modality model (Pre, Post, and Delta AUCs of 0.726, 0.776, and 0.710, respectively) in terms of 
prediction performance. Moreover, multivariate logistic regression analysis identified Her-2 status and histological 
grade as independent risk factors for NAC response in breast cancer. In both the training and test cohorts, the 
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Introduction
As is well documented, breast cancer poses a serious 
threat to the lives and health of women, as it is the lead-
ing cause of both cancer incidence and mortality for 
women [1]. Before radical surgery or radiotherapy, NAC 
is administered as a systemic chemotherapy, with the 
primary goal of reducing tumor burden, lowering tumor 
stage, and increasing the rate of breast conservation 
to improve overall patient outcomes and quality of life 
[2]. NAC, however, has a significantly variable response 
among breast cancer patients, with merely 19–30% of 
patients achieving pCR and 5–20% of patients experi-
encing disease progression after chemotherapy [3, 4]. 
Patients with poor response to NAC not only have to 
endure various toxic effects and high treatment costs 
but also face the risk of disease progression and loss of 
the opportunity for radical surgery. Therefore, there is a 
pressing need to timely and accurately predict pathologic 
response to NAC in breast cancer patients to enhance 
surgical risk stratification and guide individualized 
treatment.

At present, the gold standard for assessing the effi-
cacy of NAC in the clinical setting is the Miller-Payne 
grading system [5], which involves comparing pre-che-
motherapy biopsy specimens with post-chemotherapy 
surgical pathology specimens. Nevertheless, this method 
is invasive, time-delayed, and unable to accurately pre-
dict the response of breast cancer patients to chemo-
therapy before or early chemotherapy. Additionally, the 
“Response Evaluation Criteria in Solid Tumors” measures 
the effectiveness of NAC by using ultrasound, magnetic 
resonance imaging (MRI), and mammography to mea-
sure tumor size changes [6]. However, this approach is 
susceptible to the operator’s subjective judgment and 
clinical experience and is typically evaluated following 
the completion of the chemotherapy cycle [7]. Hence, a 
non-invasive method is urgently needed to determine 
the pathological responsiveness of NAC in breast can-
cer patients at an early stage, so that patients with poor 
response can be identified early and subsequently adjust 
their treatment strategy to optimize patient outcomes.

Radiomics has emerged as a novel tool for non-invasive 
analysis of tumors by mining a large number of high-
throughput “semantic” features from medical images to 

establish predictive models that can quantitatively assess 
and diagnose highly complex and heterogeneous malig-
nant tumors [8]. With the excellent ability of deep net-
work hierarchical structure to analyze medical images, 
deep learning offers outstanding performance in appli-
cations such as auxiliary diagnosis, risk assessment, and 
prognosis prediction for various diseases [9–12]. Previ-
ous studies [13, 14] have demonstrated that deep learning 
radiomics models (DLR) based on ultrasound images can 
effectively assess the response of breast tumors or axillary 
lymph nodes to NAC. However, most of the aforemen-
tioned studies exclusively generated models based on sin-
gle-point ultrasound images or a single machine-learning 
algorithm. Biological behavior is a dynamic ecosystem, 
and tumor heterogeneity may not be fully captured at a 
single time point [15, 16]. In addition, Delta deep learn-
ing features and radiomics features may provide more 
complementary information for the prediction of NAC 
response. Therefore, this study aimed to develop a com-
prehensive model that combined ultrasound radiomics 
and deep learning features of pre-NAC, post-treatment 2 
cycle, and Delta ultrasound images to evaluate the patho-
logical responsiveness of breast cancer patients to NAC. 
This strategy has the potential to enable early assessment 
of NAC response and assist in guiding treatment plans.

Methods
Study population
The Ethics Committee of Binzhou Medical University 
Hospital accepted this retrospective investigation, and 
informed consent was waived.

A total of 312 breast cancer patients undergoing NAC 
between January 2018 and December 2023 were enrolled 
in the present study. The following were the inclusion cri-
teria: (i) Primary breast cancer confirmed by pathologi-
cal biopsy prior to treatment; (ii) Complete clinical and 
pathological information available before and after NAC 
treatment; (iii) Underwent complete, standardized neo-
adjuvant therapy and did not receive other therapies prior 
to neoadjuvant therapy. The following were the exclusion 
standards: (i) Ipsilateral multifocal, bilateral multiple 
lesions, or distant metastases during NAC; (ii) Failure to 
complete a full cycle of neoadjuvant therapy; (iii) Incom-
plete or unavailable clinicopathological information or 
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ultrasound images. The enrollment process for the study 
population is illustrated in Fig. 1.

In order to improve the generalizability of the model, 
the dataset was randomly divided into a training cohort 
containing 219 patients (91 pCR, 128 non-pCR) and a 
test cohort comprising 93 patients (40 pCR, 53 non-
pCR). Clinically relevant information, including age, 
NAC cycle, NAC protocol, and molecular typing, was 
collected from medical records.

Treatment plan and pathologic evaluation
All patients received 6 or 8 cycles of NAC. The regimens 
consisted of TEC (docetaxel, doxorubicin, cyclophospha-
mide) or CEF (cyclophosphamide, epirubicin, fluoroura-
cil). Moreover, trastuzumab was administered to patients 
who confirmed positive for Her-2.

By using immunohistochemistry (IHC) assays, the 
tumor type and receptor status were verified. These 
assays included the expression of Ki-67, human epi-
dermal growth factor receptor-2 (Her-2), progesterone 
receptor (PR), and estrogen receptor (ER). HR positive 
was identified as ≥ 1% of nuclear staining of ER or PR 
based on the IHC index assessment criteria [13]. 20% was 
chosen as the cutoff index for Ki-67, with <20% denot-
ing low expression and ≥ 20% denoting high expression. 
An IHC grade of 3 + indicated her-2 positive. When IHC 
revealed HER2 expression to be graded 2+, the HER2 
gene amplification was confirmed by fluorescence in situ 
hybridization (FISH) [17]. Based on their receptor status, 

all patients were divided into three subtypes: (i) HR+/
HER2-; (ii) HER2+; (iii) TNBC (triple negative breast 
cancer). Based on the pathological evaluation of surgi-
cal specimens, the pathological response to NAC was 
assessed using the Miller-Payne grading system [5], with 
grades 1–4 were classified as npCR and grade 5 was clas-
sified as pCR.

Ultrasound images acquisition
All ultrasonography was performed within 1 week prior 
to NAC treatment and after the completion of the NAC 
2 cycle. Sonographers with over 10 years of experience 
in breast tumor imaging used GE LOGIQ E9, Aplio 
i900, and Esaote Mylab Twice color doppler ultrasound 
diagnostic instruments, each equipped with linear array 
high-frequency probe, with probe frequencies ranging 
between 5–13 MHZ, 5–18 MHz, and 4–13 MHz, respec-
tively (Supplementary Table 1). The maximum long-axis 
cross-sectional images of the patient’s tumor before 
treatment were collected and stored in DICOM format. 
All images remove direct or indirect personally identifi-
able information, such as name, personal phone number, 
email address, marital status, personal ID, etc., to protect 
patient privacy.

Tumor region of interest segmentation and radiomics 
analysis
Two specialized sonographers used 3D Slicer software 
(version 4.10.1, www.slicer.org) to manually delineate 

Fig. 1  Flowchart of patient enrollment in the study
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regions of interest (ROI) along the lesion boundary on 
grayscale images, avoiding areas of necrosis, calcification, 
or hemorrhage. Disagreements were resolved by a senior 
sonographer (with 20 years of experience). By comput-
ing the intraclass correlation coefficient (ICC) for the two 
volumes of interest segmented by the two sonographers 
for the same lesion, the repeatability of radiomics fea-
tures was investigated. The training cohort images were 
randomly cropped and flipped horizontally to increase 
data diversity (Supplementary Information 3). All images 
were resized to 224 × 224 pixels. The intensity distribu-
tion of the ultrasound images varied greatly since they 
were obtained across various image acquisition devices. 
All pixel values were normalized to the interval [0, 1] and 
normalized using the mean and standard deviation of the 
ImageNet dataset. In addition, Gaussian filtering and his-
togram averaging methods were used to make the pixel 
distribution of each intensity level in the image more 
uniform, so as to minimize the difference between ultra-
sound devices. Next, the Combat method was used to 
reduce the batch effect caused by the images acquired by 
different machines, and the principal component analy-
sis showed that the Combat method did correct the batch 
effect of the machine, as detailed in Supplementary Fig. 1. 
Subsequently, the Pyradiomics platform was utilized 
to extract hand-crafted radiomics features. From the 
pre-NAC ultrasound images, a total of 1032 radiomics 
features were extracted; additionally, 1032 radiomics 
features were extracted based on the post-NAC 2-cycle 
ultrasound images. In addition, in order to capture longi-
tudinal changes in tumor characteristics, the relative net 
change between the pre-NAC radiomic eigenvalues and 
the post-NAC radiomic eigenvalues was calculated as the 
Delta radiomics feature. A total of 3096 radiomics fea-
tures were extracted for each patient, including pre-NAC, 
post-NAC 2 cycle, and Delta radiomics feature sets.

Deep learning analysis
In the present study, the VGG19 pre-trained model was 
selected for transfer learning, which included 16 con-
volutional layers, 5 maximum pooling layers, 3 fully 
connected layers, and a Softmax layer. During transfer 
learning, the last fully connected layer of the pre-trained 
model was substituted with an output layer that adapted 
to our binary classification task. The remaining layers of 
the model were frozen, and only the last layer was trained 
to accelerate training and mitigate overfitting. A stochas-
tic gradient descent (SGD) optimizer and a cross-entropy 
loss function were used to optimize the model. The ini-
tial value of the learning rate was set to 0.003, as detailed 
in Supplementary Information 2. Rectangular ROIs 
with bounding boxes were manually extracted around 
the entire tumor area and its surrounding tissues using 
3D Slicer software. All images were resized to 224 × 224 

pixels for integration into the deep convolutional neural 
network. After training the deep learning model, features 
from the fully connected layer were extracted as deep 
learning features. As a result, 4096 deep-learning features 
were extracted based on the VGG19 network structure. 
Delta deep learning features were obtained by calculating 
the relative net change between the pre-NAC and post-
NAC deep learning features.

Screening of deep learning features and radiomics features
To ensure that the features most relevant for predict-
ing pCR were retained, the following approaches were 
employed. To begin, preliminary feature selection was 
carried out according to the intra-class correlation coef-
ficient, and the six ICC thresholds (0.7–0.95) were com-
pared to determine the feature set that yielded optimal 
predictive performance. Next, the importance score for 
each feature was calculated using the Boruta algorithm, 
wherein “shadow features”, which are randomized cop-
ies of feature values, were generated. These shadow fea-
tures served as benchmarks to compare the importance 
of real features. The importance score of each real feature 
was compared to that of the shadow feature. Features 
significantly more important than shadow features were 
marked as “Confirmed”. Features with a similar impor-
tance score to shadow features had a marginal impact on 
predictions and were marked as “Rejected”. In the third 
step, the Least Absolute Shrinkage and Selection Opera-
tor (LASSO) regression was utilized to filter the features, 
with the parameter λ controlling the number of selected 
features. During model training, a 10-fold cross-valida-
tion method was used to select the optimal parameter λ 
to identify the optimal number of features and concomi-
tantly avoid overfitting.

Model development and validation
The model was constructed using the training cohort, 
and multiple cross-validations were carried out. Follow-
ing this, the test cohort was used to evaluate the predic-
tive performance of the model. Five machine learning 
algorithms were investigated, namely random forest, 
decision tree, XGBoost, support vector machine, and 
logistic regression analysis, as detailed in Supplemen-
tary Information 1, 4, 5. For each algorithm, three sin-
gle-modality models (Pre, Post, Delta) were constructed 
using the screened radiomics and deep learning features. 
The best-performing machine learning algorithm was 
used to integrate the features of different time points 
and generate a DLR model. Based on the clinicopatho-
logical features collected in this study, univariate and 
multivariate logistic regression analyses were conducted 
to identify independent predictors and construct a clini-
cal model. A combined model (Integrated) was con-
structed by integrating independent clinical predictors 
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and characteristics of NAC from different time points. In 
order to ensure the robustness of the model, the whole 
construction process was repeated 1000 times using the 
bootstrap method. The outline of model establishment is 
portrayed in Fig. 2.

The model was assessed using the decision curve analy-
sis (DCA) and receiver operating characteristic (ROC) 
curve. The model’s sensitivity, specificity, accuracy, 

negative predictive value, and positive predictive value 
were determined by maximizing the Youden index and 
determining the ideal cut-off value. In addition, the F 1 
score, Matthews correlation coefficient, accuracy, and 
recall indicators were used to evaluate the prediction 
performance of the model. The Delong test was used to 
compare the area under the curve (AUC) values of differ-
ent models.

Fig. 2  Workflow of the study. (a) Development of Integrated; (b) Evaluating the predictive performance of Integrated; (c) Interpretability of the model
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Visualization and interpretability of the model
In this study, interpretable algorithms such as SHAP and 
Grad-CAM were used to visualize the decision-making 
process of the model and to explore the most relevant 
features and tissue structures in ultrasound images asso-
ciated with pCR after NAC to provide evidence to sup-
port the future clinical applicability of the model. The 
SHAP algorithm, based on cooperative game theory, 
measures the importance of features by calculating their 
contribution values (Shapley value), and Grad-CAM 
visually interprets the areas that the deep convolutional 
neural network model focuses on when making predic-
tions to form a “heatmap” and displays the most rele-
vant parts of the image to the model’s decision, thereby 
addressing “black box” challenges associated with artifi-
cial intelligence.

Statistical analysis
Python 3.6.12 and SPSS 26.0 were used for statistical 
analyses. The t-test was used to compare normally dis-
tributed continuous variables, which were reported as 
mean ± standard. The Chi-square test or the Fisher exact 
test were used to compare categorical variables, which 
were reported as frequencies and percentages. A two-
sided p<0.05 was considered statistically significant. The 
code used in this research has been uploaded to GitHub, 
see link (​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​s​h​i​4​​1​8​​0​/​B​​r​e​a​​s​t​C​a​​n​c​​e​r​_​N​A​C​
_​P​r​e​d​i​c​t​o​r) for details.

Results
Clinical features
A total of 131 patients achieved pCR, whereas the 
remaining 181 patients were classified as non-pCR. The 
pCR rates in the training cohort and the test cohort were 
41.6% and 43.0%, respectively. Among the three molec-
ular subtypes, the pCR rate was 29.6% (56/189) for the 
HR+/HER2- subtype, 61.4% (43/70) for the HER2 + sub-
type, and 60.4% (32/53) for the TNBC subtype. No sig-
nificant differences were noted in clinicopathological 
characteristics between the training cohort and the test 
cohort (P > 0.05) (Supplementary Table 2). There were 
notable variations between the pCR and non-pCR groups 
in terms of molecular types, ER, PR, HER2, and Ki-67 
expression (P < 0.05). The difference in histological grade 
was statistically significant only in the training cohort 
(P < 0.05) (Table 1).

Model construction
A single radiomics model was developed based on fea-
tures from pre-NAC and post-NAC 2-cycle time points 
screened using different ICC thresholds. Six thresholds 
were tested, and the trained radiomics model displayed 
superior performance when features with ICC ≥ 0.80 
were used, as displayed in Fig. 3.

After feature screening, 16, 13, and 10 features 
were selected to construct the Pre model, Post model, 
and Delta model based on the five machine learning 

Table 1  Clinical characteristics of patients in different cohorts
Characteristics Training cohort(N = 219) Test cohort(N = 93)

pCR
(n = 91)

Non-pCR
(n = 128)

P value pCR
(n = 40)

Non-pCR
(n = 53)

P value

Age, mean ± SD, years 48.4 ± 10.13 50.4 ± 11.12 0.200 50.0 ± 10.50 49.5 ± 10.20 0.807
Grade(%)
  I
  II
  III

0(0.00%)
59(64.8%)
32(35.2%)

4(3.12%)
100(78.1%)
24(18.8%)

0.007 1(2.50%)
24(60.0%)
15(37.5%)

0(0.00%)
41(77.4%)
12(22.6%)

0.085

Moduler(%)
  luminalA
  luminalB
  Her2overexpression
  Triple-negative

2(2.20%)
36(39.6%)
32(35.2%)
21(23.1%)

24(18.8%)
70(54.7%)
18(14.1%)
16(12.5%)

<0.001 3(7.50%)
15(37.5%)
11(27.5%)
11(27.5%)

8(15.1%)
31(58.5%)
9(17.0%)
5(9.43%)

0.036

ER status(%)
  Positive
  Negative

32(35.2%)
59(64.8%)

89(69.5%)
39(30.5%)

<0.001 16(40.0%)
24(60.0%)

38(71.7%)
15(28.3%)

0.004

PR status(%)
  Positive
  Negative

26(28.6%)
65(71.4%)

76(59.4%)
52(40.6%)

<0.001 10(25.0%)
30(75.0%)

33(62.3%)
20(37.7%)

0.001

HER-2 status(%)
  Positive
  Negative

66(72.5%)
25(27.5%)

44(34.4%)
84(65.6%)

<0.001 25(62.5%)
15(37.5%)

15(28.3%)
38(71.7%)

0.002

Ki-67 status(%)
  <20%
  ≥ 20%

34(37.4%)
57(62.6%)

80(62.5%)
48(37.5%)

<0.001 9(22.5%)
31(77.5%)

37(69.8%)
16(30.2%)

<0.001

pCR, pathologic complete response; ER, estrogen receptor; PR, progesterone receptor; Her-2, human epidermal growth factor receptor-2

https://github.com/shi4180/BreastCancer_NAC_Predictor
https://github.com/shi4180/BreastCancer_NAC_Predictor
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classifiers, respectively (Supplementary Table 3). In the 
current study, five robust machine learning algorithms 
were developed to construct deep learning radiomics 
models, and their performance was compared to deter-
mine the optimal model. In the training and test cohorts, 
three single-modality models based on the XGBoost 
algorithm outperformed the other classifiers, as detailed 

in Table 2. Therefore, based on the XGBoost algorithm, 
the DLR model was constructed by combining pre, post, 
and delta deep learning features and radiomics features. 
After univariate and multivariate logistic regression anal-
ysis, histological grade and Her-2 status were identified as 
independent predictors for the efficacy of NAC. Follow-
ing this, the DLR model was combined with independent 

Table 2  Performance of three single-modality models constructed using five machine learning algorithms for predicting the efficacy 
of NAC in the training cohort and the test cohort
Model Features Training cohort Test cohort

Mean AUC
(95% CI)

ACC SEN SPE Mean AUC
(95% CI)

ACC SEN SPE

XGBoost Pre 0.773(0.735–0.855) 0.708 0.714 0.703 0.726(0.660–0.732) 0.645 0.775 0.847
Post 0.799(0.752–0.880) 0.753 0.676 0.891 0.776(0.664–0.881) 0.752 0.700 0.792
Delta 0.785(0.727–0.846) 0.763 0.703 0.805 0.710(0.667–0.767) 0.697 0.650 0.798

RF Pre 0.768(0.733–0.845) 0.685 0.660 0.773 0.721(0.690–0.737) 0.699 0.750 0.660
Post 0.814(0.753–0.863) 0.735 0.626 0.812 0.713(0.650–0.779) 0.688 0.750 0.642
Delta 0.759(0.722–0.843) 0.772 0.659 0.852 0.707(0.657–0.817) 0.690 0.625 0.830

SVM Pre 0.744(0.732–0.824) 0.644 0.668 0.784 0.708(0.678–0.720) 0.624 0.688 0.817
Post 0.705(0.677–0.752) 0.717 0.643 0.883 0.784(0.737–0.808) 0.710 0.750 0.792
Delta 0.832(0.806–0.890) 0.749 0.648 0.820 0.724(0.669–0.750) 0.677 0.626 0.792

logistics Pre 0.698(0.617–0.755) 0.653 0.605 0.775 0.679(0.606–0.703) 0.602 0.675 0.736
Post 0.797(0.772–0.872) 0.753 0.659 0.820 0.771(0.735–0.827) 0.731 0.700 0.755
Delta 0.783(0.749–0.862) 0.703 0.627 0.828 0.700(0.670–0.733) 0.691 0.641 0.749

DT Pre 0.696(0.678–0.829) 0.676 0.835 0.797 0.640(0.500–0.730) 0.634 0.875 0.736
Post 0.740(0.656–0.781) 0.753 0.659 0.820 0.727(0.607–0.727) 0.731 0.650 0.755
Delta 0.695(0.657–0.755) 0.671 0.825 0.655 0.614(0.579–0.704) 0.602 0.700 0.728

AUC, the area under curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; 95% CI, 95% confidence interval; XGBoost, eXtreme Gradient Boosting; RF, random forest; 
SVM, support vector machine; logistics, multivariate logistic regression analysis; DT, decision tree

Fig. 3  Performance of the XGBoost model based on different radiomics feature sets screened by different ICC thresholds. ICC = intra-class correlation 
coefficient; AUC: area under the ROC curve
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clinical risk factors to construct the Integrated model. 
As anticipated, the Integrated model displayed the high-
est predictive performance (training cohort AUC 0.924, 
accuracy 0.831, sensitivity 0.786, specificity 0.960, test 
cohort AUC 0.875, accuracy 0.817, sensitivity 0.775, 
specificity 0.849) in the training and test cohorts, with 
its AUC value, accuracy, sensitivity and specificity being 
better than those of the DLR model (training cohort AUC 
0.827, accuracy 0.763, sensitivity 0.665, specificity 0.890, 

test cohort AUC 0.827, accuracy 0.752, sensitivity 0.700, 
specificity 0.792), as shown in Table  3. Figure  4 depicts 
the AUC of all models across different cohorts. In addi-
tion to the above indicators, we also used the F1 score, 
Matthews correlation coefficient, precision, and recall to 
evaluate the prediction performance of the model (Sup-
plementary Table 4). Decision curve analysis delineated 
that the Integrated model provided higher clinical net 
benefit compared to the other models, as shown in Fig. 5.

Table 3  Performance of the DLR and Integrated models constructed using the XGBoost machine learning algorithm in predicting the 
efficacy of NAC in the training and test cohorts
Cohort Model AUC 95%CI Accuracy Sensitivity Specificity
Training cohort DLR model 0.827 0.817–0.886 0.763 0.665 0.890

Integrated 0.924 0.898–0.967 0.831 0.786 0.960
Test cohort DLR model 0.827 0.799–0.836 0.752 0.700 0.792

Integrated 0.875 0.806–0.877 0.817 0.775 0.849

Fig. 5  Decision curves for the Clinical, Pre, Post, Delta, DLR, and Integrated models in the training cohort (A) and test cohort (B)

 

Fig. 4  ROC curves for the Clinical, Pre, Post, Delta, DLR, and Integrated models in the training cohort (A) and test cohort (B)
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Assessing model performance across the three subgroups
Table 4 Summarizes the Integrated model’s diagnostic 
metrics for every subtype in the test and training cohorts. 
In the training cohort, the AUC of the Integrated model 
for the HR+/HER2-, HER2+, and TNBC subgroups was 
0.952, 0.871, and 0.952, respectively. Indeed, the Inte-
grated model outperformed the DLR model, the pre 
model, the Post model, and the Delta model, and simi-
lar results were obtained in the test cohort. Supplemen-
tary Figure 2 shows the ROC curves of all models for 
each subgroup. Importantly, the accuracy, sensitivity, and 
specificity of the Integrated model were higher than those 
of the DLR and the three single-modality models. Mean-
while, the Delong test revealed that the combination of 
Pre, Post, and Delta deep learning features and radiomics 
features significantly improved the performance of the 
model in predicting the pCR of patients after NAC, as 
detailed in Table 5. Other predictions of the model, such 
as F1 score, Matthews correlation coefficient, precision, 
and recall are shown in Supplementary Table 5.

Decision curve analysis was performed to evaluate the 
clinical benefit of the models across different molecular 

subtypes. In the test cohort, the Integrated model exhib-
ited a higher clinical net benefit compared to most other 
models when the thresholds set between 0.3 and 0.65, 
0.25–0.75, and 0.25–0.73 for the HR+/HER2-, HER2+, 
and TNBC subtypes, respectively. The decision curves 
of all models for each molecular subtype are displayed in 
Supplementary Fig. 3.

Interpretability of the model
In this study, the SHAP algorithm was used to quantify 
the importance of each feature and visually depict the 
impact of individual features on the predictive results of 
the model. The feature importance bar chart (Fig.  6A) 
was generated by averaging the absolute SHAP values for 
each feature to show the degree of influence of the feature 
on the final predicted probability. The results unveiled 
that 8 radiomics features and 4 deep learning features 
had the greatest impact on the prediction probability of 
the model. At the same time, the heat map (Fig. 6B) dis-
played differences in these 12 features between patients 
in the pCR group and npCR group.

Table 4  Performance of the Integrated model in predicting pCR after NAC across various molecular subtypes in the training and test 
cohorts
Molecular subtype Model Training cohort Test cohort

Mean AUC
(95% CI)

ACC SEN SPE Mean AUC
(95% CI)

ACC SEN SPE

HR+/HER2-
(n = 112)

Pre 0.764(0.640–0.868) 0.863 0.625 0.792 0.743(0.523–0.796) 0.641 0.714 0.725
Post 0.833(0.600-0.919) 0.863 0.650 0.877 0.806(0.693–0.878) 0.795 0.708 0.812
Delta 0.744(0.654–0.783) 0.794 0.625 0.830 0.708(0.590–0.810) 0.709 0.712 0.743
DLR 0.898(0.847–0.917) 0.890 0.625 0.923 0.846(0.769–0.890) 0.821 0.714 0.843
Integrated 0.952(0.810–0.955) 0.931 0.752 0.944 0.862(0.753–0.897) 0.897 0.725 0.847

HER2+
(n = 147)

Pre 0.824(0.723–0.836) 0.663 0.681 0.654 0.819(0.739–0.828) 0.625 0.720 0.733
Post 0.749(0.709–0.798) 0.691 0.682 0.704 0.735(0.687–0.784) 0.675 0.670 0.667
Delta 0.833(0.790–0.835) 0.709 0.700 0.727 0.811(0.604–0.842) 0.686 0.640 0.766
DLR 0.866(0.799–0.873) 0.718 0.773 0.809 0.827(0.677–0.845) 0.750 0.680 0.867
Integrated 0.871(0.774–0.876) 0.790 0.797 0.886 0.879(0.725–0.928) 0.760 0.783 0.877

TNBC
(n = 53)

Pre 0.762(0.659–0.814) 0.694 0.796 0.789 0.729(0.680–0.749) 0.714 0.728 0.833
Post 0.845(0.809–0.876) 0.647 0.801 0.758 0.854(0.760–0.875) 0.716 0.872 0.802
Delta 0.780(0.720–0.892) 0.722 0.648 0.785 0.719(0.680–0.807) 0.785 0.665 0.855
DLR 0.827(0.762–0.851) 0.750 0.647 0.842 0.812(0.604–0.895) 0.714 0.750 0.667
Integrated 0.952(0.829–0.967) 0.843 0.809 0.956 0.896(0.693–0.895) 0.857 0.876 0.863

AUC, the area under curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; 95% CI, 95% confidence interval; HR, hormone receptor; Her-2, human epidermal growth 
factor receptor-2; TNBC, triple negative breast cancer

Table 5  Results of the Delong test for all models in the training and test cohorts
Models Clinical Pre-radiomic Post-radiomic Delta-radiomic DLR Integrated-model
Clinical - 0.746 0.292 0.901 0.004* 0.002*

Pre-radiomic 0.454 - 0.343 0.839 0.046* 0.004*

Post-radiomic 0.159 0.494 - 0.295 0.065 0.002*

Delta-radiomic 0.309 0.79 0.664 - 0.036* 0.005*

DLR 0.008* 0.027* 0.141 0.126 - 0.056
Integrated-model < 0.001* < 0.001* < 0.001* < 0.001* < 0.001* -
Training cohort Test cohort
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In the final convolutional layer, Grad-CAM determines 
the weights of each feature map to the image category, 
computes the weighted sum of each feature map, and 
then projects the weighted feature image onto the origi-
nal image as a heat map and visually interprets the pre-
diction results of the model. Grad-CAM showed that the 

areas in and near the breast cancer lesions were activated 
in the patients with correct predictions. confirming that 
our model effectively identified the target region, and the 
extracted features correctly reflected relevant informa-
tion on pCR, consistent with the results of previous stud-
ies [14, 18] (Fig.  7A, C). The morphology of the lesions 

Fig. 6  SHAP Feature Importance Bar Chart (A) and Heat Map (B). SHAP bar chart: SHAP calculates and sorts the features in the random forest model ac-
cording to their importance, showing the contribution of each feature to the overall prediction. Heat map shows the association of pathologic complete 
response (pCR) of breast cancer to neoadjuvant chemotherapy with radiomics features and deep learning features in the training and test cohorts
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in the case may be atypical, making it ineffective for the 
model to capture it. In patients with incorrect predic-
tions, the model failed to accurately identify the sur-
rounding areas within and immediately adjacent to the 
tumor, but instead identified unrelated areas around the 
lesion, which may be the reason for the misclassification 
of Grad-CAM visualization (Fig. 7B, D).

Discussion
Herein, the response to NAC in breast cancer patients 
was examined using pre-NAC and post-NAC 2-cycle 
ultrasound data. A combination model that integrated 
multi-cycle imaging features and clinical data was estab-
lished. Notably, the results uncovered that the model 
generated the highest AUC values of 0.924 and 0.875 in 
the training and test cohorts, respectively. The high per-
formance of the combined model suggests that the model 
combining multi-cycle ultrasound images and clinical 
information can effectively predict the tumor response 

to NAC and provide valuable insights to guide clinical 
decision-making.

Of note, images of breast cancer primary lesions con-
tain valuable biological information, and the biologi-
cal behavior of tumors can be effectively predicted by 
extracting high-throughput features, converting the 
images into digital matrices, and then correlating molec-
ular features and clinical prognostic factors. The imaging 
findings of primary breast cancer prior to treatment are 
primarily related to tumor characteristics, whereas ultra-
sound images following NAC treatment directly reflect 
the response of breast cancer to chemotherapy, such as 
the presence of hypoxic and fragmented tumor cells, 
which ultimately culminates in the formation of fibro-
sis and collagen tissue [19, 20]. Timely identification of 
these changes may significantly benefit patients. There-
fore, two single-modality models, Pre and Post, were con-
structed based on single-point ultrasound images herein. 
The results highlighted the high predictive performance 

Fig. 7  Grad-CAM visualization provides four predictions for the model: true positives (A), true negatives (C), false positives (D), and false negatives (B). The 
red and yellow regions represent areas of model activation with the greatest predictive significance for the results, whereas the green and blue regions 
reflect areas of weaker predictive significance
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of both models (training cohort AUC 0.773, 0.799, test 
cohort AUC 0.726, 0.776, respectively).

As is well documented, intra-tumoral heterogene-
ity drives tumor progression and treatment response 
[21, 22] and evolves spatially and temporally [23]. Delta 
radiomics can capture the heterogeneity of change 
information typically overlooked by single time-point 
models. While previous studies have demonstrated that 
delta radiomics features and deep learning features can 
also provide information for predicting the response of 
breast masses or axillary lymph nodes to NAC [24–26], 
the majority of studies were based on MRI images, and 
studies exploring the use of delta deep learning features 
based on ultrasound images for predicting response to 
NAC are scarce. Consequently, the Delta model was con-
structed based on changes in the internal characteristics 
of tumors after early treatment. The results signaled that 
the Delta model could effectively predict pCR in both the 
training cohort (AUC: 0.785) and the test cohort (AUC: 
0.710). Huang et al. [26] used the deep learning features 
and radiomics features derived from multiparameter 
MRI sequences before and after treatment to construct a 
model to predict NAC response and reported AUC val-
ues ranging between 0.796 and 0.812, which was higher 
than the model constructed in this study. This finding 
may be ascribed to its large sample size and multi-cen-
ter design, which incorporated three MRI sequences, 
namely T2-weighted (T2WI) images, dynamic contrast-
enhanced (DCE) images, and diffusion-weighted (DWI) 
images, and acquired more information about the under-
lying biological behaviors of the tumor and its sensitivity 
to chemotherapy.

It is worthwhile emphasizing that in this study, the pre-
dictive performance of the Post model based on early 
treatment ultrasound data was higher than that of the 
Pre and Delta models, highlighting the significant pre-
dictive value of ultrasound information obtained dur-
ing early treatment. In line with the results of Yang et al. 
[24], these results may be attributed to ultrasound imag-
ing relying on the operational technique of the examiner, 
resulting in differences between imaging characteris-
tics before and after chemotherapy, such as gray gain 
scale and image quality. Additionally, the comparison of 
radiomics properties may be impacted by the presence 
of necrotic and remaining tumor tissues following treat-
ment. These factors may lead to the unsteady and sto-
chastic in differences between deep learning features and 
radiomics features before and after chemotherapy, which 
may result in a decline in the predictive performance of 
the Delta model.

In this study, there was a significant improvement in 
model performance when information from different 
time points during NAC was introduced into the DLR 
model. The Delong test showed that the AUC value for 

predicting pCR using the DLR model was statistically 
superior to that using the Pre, Delta, and Clinical models. 
Besides, several clinicopathologic features were associ-
ated with NAC response, namely histological grade and 
molecular typing, as well as ER status, PR status, Her-2 
status, and Ki-67 index. After multivariate logistic regres-
sion analysis, only histological grade and Her-2 indexes 
were associated with pCR after NAC. This result may be 
related to the higher sensitivity of Her-2-positive patients 
to targeted drugs, which act by inhibiting Her-2 signaling 
and dimerization [27]. Thus, it is more feasible to achieve 
pCR after NAC in Her-2-positive patients. A high his-
tological grade reflects the active proliferation of tumor 
cells and a high degree of malignancy, and chemotherapy 
drugs play a role in inhibiting tumor cell proliferation and 
inducing apoptosis. Considering the effects of imaging 
and clinical information on NAC response, an Integrated 
model was developed that was capable of accurately pre-
dicting pCR after NAC in both the training cohort (AUC 
0.924) and the test cohort (AUC 0.875). Gu et al. [28] 
extracted ultrasound radiomics features from ultrasound 
images from pre-NAC, NAC 2 cycle, and NAC 4 cycle, 
constructed two deep learning models, and described 
that the AUC of the deep learning model based on the 
ultrasound images of pre-NAC and post-NAC 4 cycles 
(AUC value of 0.937) was significantly higher than that 
of the model based on pre-NAC and post-NAC 2 cycle 
ultrasound images (AUC value 0.812). Wu et al. [29] inte-
grated continuous ultrasound features from different 
phases of NAC, before, during, and after treatment, with 
clinicopathological factors to construct a deep learning 
model for predicting the efficacy of NAC (AUC 0.924). 
While the Integrated model constructed in this study 
demonstrated predictive performance comparable to the 
above-mentioned models, this study was solely based 
on pre-NAC and post-NAC 2-cycle ultrasound images. 
Noteworthily, our model can accurately predict pCR 
after NAC at an early stage and guide the selection and 
adjustment of patient treatment regimens.

Given that distinct molecular subtypes of breast can-
cer may lead to varying responses to NAC, patients were 
further grouped into subgroup analyses in this study. 
Our results revealed that the Integrated model had the 
highest predictive performance compared to the other 
models across the three subtypes and was effective in 
predicting patient response to NAC, particularly among 
the HR+/HER2- and TNBC subtypes (AUC 0.952). Previ-
ous studies have reported that the HR+/HER2- subtype 
has a low response rate to NAC, whereas the HER2 + and 
TNBC subtypes have a higher response rate to NAC 
[30]. Therefore, for patients with the HR+/HER2- sub-
type who wish to preserve breast tissue, the Integrated 
model (training cohort AUC: 0.952, test cohort AUC: 
0.862) can assist in identifying patients who can derive 
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more benefits from NAC at an early stage, thereby spar-
ing them from unnecessary chemotherapy-related toxici-
ties. The predictive model constructed in this study based 
on ultrasonography had a similar predictive performance 
to the deep learning model developed by Wu et al. [29], 
which was based on continuous time-point ultrasound 
images (HR+/HER2- AUC: 0.899–0.945, HER2 + AUC: 
0.876–0.955, TNBC AUC: 0.802–0.932), and outper-
formed the predictive model based on multiparametric 
MRI at a single time point developed by Liu et al. (HR+/
HER2- AUC: 0.87–0.87, HER2 + AUC: 0.58–0.79, TNBC 
AUC: 0.79–0.84) [31]. This signifies that multi-stage bio-
logical and pathophysiological changes during NAC cap-
tured via serial ultrasonography substantially contribute 
to outcome prediction, which exceeds the information 
detected by MRI at a single pre-NAC time point.

The most important radiomics features screened in 
this study include 4 GLRLM, 1 GLDM and 3 firstorder 
parameters, GLRLM parameters are used to describe the 
degree of difference in gray value between pixels in the 
lesion, and it has been proved that the higher the value of 
some GLRLM features (e.g., glrlm_LongRunEmphasis), 
the rougher and heterogeneous the tumor texture is, and 
the greater the tumor heterogeneity [32]. The higher the 
heterogeneity of breast tumors, the more poorly differen-
tiated and malignant, and the lower the efficacy of NAC 
[33]. The GLDM parameter describes the pairwise queu-
ing of pixels with a set absolute difference in gray scale in 
a given direction and distance, which is used to highlight 
the local heterogeneous information, and the SmallDe-
pendenceHighGrayLevelEmphasis (HGSDE) parameter 
measures the joint distribution of high gray values and 
small dependencies in the image, the larger the HGSDE 
value, the smaller the dependence of the high gray area 
in the image, the less homogeneous texture of the image, 
and the more uneven the texture, the greater the tumor 
heterogeneity. The first-order feature can be based on the 
global grayscale histogram to reflect the symmetry, uni-
formity, and local intensity distribution changes of the 
measured voxels, and can show the degree and extent 
of intra-tumoral spatial heterogeneity by quantifying 
the multi-region space of the lesion [34]. Therefore, the 
above parameters may be the key variables in predicting 
the efficacy of NAC in breast cancer by suggesting the 
heterogeneity and roughness of tumor internal tissues.

We also take into account the implementation of the 
comprehensive model into future clinical practice, and 
from its performance on the test cohort, all predicted 
non-pCR patients would be directed to surgery, which 
would cause 9.7% (9 of 93) overtreatment; all predicted 
pCR patients might be directed to extended non-invasive 
biopsy, undertreatment for those patients with the pre-
diction of pCR could be prevented by extended imag-
ing-guided vacuum-assisted biopsy of the tumor bed or 

radiation therapy and omitting surgery. However, false 
negative patients (8/93; 8.6%) with positive biopsy results 
need to be directed to surgery. Finally, 33.3% (31 of 93) 
would benefit from this de-escalating concept.

Nevertheless, some limitations of our study merit 
acknowledgment. Firstly, given that this was a single-
center retrospective study with a limited sample size, 
the possibility of selection bias cannot be excluded. The 
developed model requires validation from multi-center 
studies in the future. Secondly, the imbalance in the pro-
portion of molecular subtypes may have compromised 
the predictive results of the model. Thirdly, this study 
exclusively extracted the characteristics from the tumor 
region, and previous studies established that tissues adja-
cent to tumors could also provide relevant information 
for the prediction of NAC response. In the future, we will 
obtain the surrounding tissues of the tumor for compre-
hensive analysis. Lastly, only ultrasound data were used 
to develop the model, and the information contained in 
pathological images and MRI images may improve the 
performance of our model.

Conclusion
In this study, pre-NAC, post-NAC 2 cycle, and Delta 
ultrasound data were used to develop the Integrated 
model, which serves as a non-invasive method to accu-
rately and safely identify breast cancer patients who can 
achieve pCR after NAC preoperatively. This model pro-
vides strong clinical evidence to guide treatment strate-
gies for breast cancer patients.
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