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Abstract
Background  The ataxia-telangiectasia mutated (ATM) kinase phosphorylates and activates several downstream 
targets that are essential for DNA damage repair, cell cycle inhibition and apoptosis. Germline biallelic inactivation of 
the ATM gene causes ataxia-telangiectasia (A-T), and heterozygous pathogenic variant (PV) carriers are at increased 
risk of cancer, notably breast cancer. This study aimed to investigate whether DNA methylation profiling can be 
useful as a biomarker to identify tumors arising in ATM PV carriers, which may help for the management and optimal 
tailoring of therapies of these patients.

Methods  Breast tumor enriched DNA was prepared from 2 A-T patients, 27 patients carrying an ATM PV, 6 patients 
carrying a variant of uncertain clinical significance and 484 noncarriers enrolled in epidemiological studies conducted 
in France and Australia to investigate genetic and nongenetic factors involved in breast cancer susceptibility. 
Genome-wide DNA methylation analysis was performed using the Illumina Infinium HumanMethylation EPIC and 
450K BeadChips. Correlation between promoter methylation and gene expression was assessed for 10 tumors for 
which transcriptomic data were available.

Results  We found that the ATM promoter was hypermethylated in 62% of tumors of heterozygous PV carriers 
compared to the mean methylation level of ATM promoter in tumors of noncarriers. Gene set enrichment analyses 
identified 47 biological pathways enriched in hypermethylated genes involved in neoplastic, neurodegenerative and 
metabolic-related pathways in tumor of PV carriers. Among the 327 differentially methylated promoters, promoters of 
ARHGAP40, SCGB3A1 (HIN-1), and CYBRD1 (DCYTB) were hypermethylated and associated with a lower gene expression 
in these tumors. Moreover, using three different deep learning algorithms (logistic regression, random forest and 

Breast tumors from ATM pathogenic variant 
carriers display a specific genome-wide DNA 
methylation profile
Nicolas M. Viart1 , Anne-Laure Renault1,2 , Séverine Eon-Marchais1 , Yue Jiao1 , Laetitia Fuhrmann3 , Sophia 
Murat El Houdigui1 , Dorothée Le Gal1 , Eve Cavaciuti1 , Marie-Gabrielle Dondon1 , Juana Beauvallet1 , 
Virginie Raynal4 , Dominique Stoppa-Lyonnet5 , Anne Vincent-Salomon3 , Nadine Andrieu1† , Melissa 
C. Southey2,6†  and Fabienne Lesueur1*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://orcid.org/0000-0001-7775-9910
http://orcid.org/0000-0001-6321-3458
http://orcid.org/0000-0001-5021-7775
http://orcid.org/0000-0001-9872-6034
http://orcid.org/0000-0003-1755-6307
http://orcid.org/0000-0002-0106-1572
http://orcid.org/0009-0008-0595-7676
http://orcid.org/0000-0001-7086-2149
http://orcid.org/0000-0001-6016-8524
http://orcid.org/0009-0001-0538-263X
http://orcid.org/0000-0003-1729-5733
http://orcid.org/0000-0002-5438-8309
http://orcid.org/0000-0001-5754-5771
http://orcid.org/0000-0001-8820-5550
http://orcid.org/0000-0002-6313-9005
http://orcid.org/0000-0001-7404-4549
http://crossmark.crossref.org/dialog/?doi=10.1186/s13058-025-01988-w&domain=pdf&date_stamp=2025-3-10


Page 2 of 16Viart et al. Breast Cancer Research           (2025) 27:36 

Background
Germline biallelic inactivation of ATM is responsible 
for ataxia-telangiectasia (A-T), a rare autosomal reces-
sive disorder affecting about one in 100,000 children in 
Europe. A-T is characterized by neuronal degeneration, 
immunological deficiency, cutaneous telangiectasias, 
genetic instability, radiosensitivity and predisposition to 
cancers [1–4]. Women related to an A-T child and het-
erozygous for the ATM familial pathogenic variant (PV) 
have a 2- to 3-fold increased risk of developing a cancer, 
and 5- to 9-fold increased risk of developing a breast can-
cer (BC) as compared to women from the general popu-
lation [3–8]. Although A-T is a rare disorder, 0.5 to 1% 
of the general population is estimated to be heterozygous 
for such an ATM variant [9–12]. Moreover, ATM PV or 
predicted PV are identified in about 5% of index cases 
of families predisposed to breast and ovary cancers who 
undergo genetic testing [11–13]. In these families, het-
erozygous variant carriers have a 2- to 4-fold increased 
risk of BC compared to noncarriers, but reported risk 
estimates for BC and other cancers vary greatly according 
to the type of variant [9, 11, 12, 14, 15]. To inform clini-
cal management of ATM variant carriers, accurate vari-
ant classification and precise age-specific cumulative risk 
of specific cancers of ATM variant carriers is a prerequi-
site, and current efforts aim to address these questions 
through large-scale genetic epidemiological studies.

At the somatic level, ATM mutations or deletions are 
also commonly found in lymphoid malignancies and in a 
variety of solid tumors including breast tumors [16] but 
as yet are not strong indicators for specific targeted ther-
apies [17]. We showed that breast tumors developed by 
ATM PV carriers are more frequently estrogen receptor-
positive (ER+; in 97% of the cases) [18], consistent with 
other studies [11, 12, 19–21], and of histological subtype 
luminal B or luminal B/HER2 + in 60.7% of the cases. 
Tumors arising in ATM PV carriers lack the homolo-
gous recombination deficiency (HRD)-related mutational 
signature (signature 3 from the COSMIC database [22]) 
commonly observed in BRCA1- and BRCA2-deficient 
tumors [18, 19, 23] but display specific copy number 
aberrations, including loss of heterozygosity (LOH) at the 
ATM locus on 11q22-23 (in 67% of tumors) and loss at the 
RB1 locus on 13q14 (in 69.6% of tumors) [18]. However, a 

somatic genomic signature that predicts the ATM status 
of the tumor has not yet been reported. Given that ATM 
mediated the retinoblastoma protein pRB function to 
control the DNA methyltransferase DNMT1 stability and 
thus DNA methylation [24], we hypothesized that breast 
tumors arising in carriers of ATM PVs may have methyla-
tion aberrations. Our aim was therefore to describe the 
genome-wide DNA methylation profile of breast tumors 
of ATM PV carriers to further examine the role of ATM 
in oncogenesis and to identify potential therapeutic tar-
gets that could benefit this distinct subgroup of women 
with BC.

Materials and methods
Participants
Breast formalin-fixed, paraffin-embedded (FFPE) tumor 
samples were collected from patients enrolled in the 
French studies CoF-AT2 (French prospective cohort on 
families segregating an ATM variant) [25–27] and GEN-
ESIS (GENE SISters study) [28], and in the Australian 
studies ABCFS (Australian Breast Cancer Family Study) 
[29] and MCCS (Melbourne Collaborative Cohort Study) 
[30].

CoF-AT2 is an ongoing prospective cohort initiated in 
2003 to follow women related to an A-T patient. Epide-
miological data including detailed information on famil-
ial and clinical data, together with biological samples 
(blood, tumors) of participants are being collected.

GENESIS is a study on familial BC [28]. Index cases are 
women diagnosed with invasive breast carcinoma or in 
situ ductal carcinoma, having at least one sister affected 
with BC, and tested negative for PV in BRCA1 and 
BRCA2. ATM variant carriers were identified through a 
case-control mutation-screening study thanks to a rese-
quencing of 113 DNA repair genes [15].

ABCFS is a population-based case-control family 
study of BC with an emphasis on early-onset BC cases 
(age at diagnosis < 40 years), carried out in Melbourne 
and Sydney (Australia) [31]. Women affected with BC 
were identified using the Victorian and the New South 
Wales cancer registries and were invited to participate 
in the study between 1992 and 1999. ATM PV carriers 
were identified through a population-based case-control 
mutation-screening [32].

XGBoost), we identified a set of 27 additional biomarkers predictive of ATM status, which could be used in the future 
to provide evidence for or against pathogenicity in ATM variant classification strategies.

Conclusions  We showed that breast tumors that arise in women who carry an ATM PV display a specific genome-
wide DNA methylation profile. Specifically, the methylation pattern of 27 key gene promoters was predictive of ATM 
PV status of the women. These genes may also represent new medical prevention and therapeutic targets for these 
women.

Keywords  Breast cancer, ATM gene, Epigenetics, DNA methylation, Biomarker, Molecular testing
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MCCS is a prospective cohort study of healthy adults 
recruited between 1990 and 1994 [30]. Incident BC cases 
were identified by linkage with the Victorian Cancer Reg-
istry, and FFPE tumor blocks related to each case were 
retrieved from the laboratory that made the cancer diag-
nosis. The ATM gene variant information was obtained 
via gene panel sequencing conducted by the Breast Can-
cer Risk after diagnostic Gene Sequencing (BRIDGES) 
project [21].

Selection of ATM variant carriers and noncarriers
Eligible ATM variant carriers were either A-T patients 
who developed BC (N = 2), heterozygous carriers of a 
loss-of-function (LoF) variant or of a missense vari-
ant classified as pathogenic for A-T disorder (N = 27). 
We also included heterozygous carriers of a variant 
of uncertain clinical significance (VUS) correspond-
ing to missense variants predicted as being deleterious 
because of their low minor allele frequency (MAF) and 
high CADD (Combined Annotation Dependent Deple-
tion) phred score [33]. Here we considered variants with 
a MAF < 0.0005 in GnomAD populations and a CADD 
phred score > 20 according to CADD v1.6 (N = 6). Char-
acteristics of ATM variant carriers with a description of 
the variant are provided in Table 1.

The control series was composed of 489 FFPE breast 
tumors from female noncarriers of ATM variants identi-
fied in the MCCS (N = 440) and ABCFS (N = 49) studies.

None of the ATM variant carriers and noncarri-
ers included in the study carried a known pathogenic 
or likely pathogenic variant in the following BC sus-
ceptibility genes: BRCA1, BRCA2, BARD1, BRIP1, 
CDH1, CHEK2, MRE11A, NBN, PALB2, PTEN, RAD50, 
RAD51C, RAD51D, STK11 and TP53.

DNA preparation
Tumor enriched DNA was prepared from each BC 
tumor as described in Wong et al. 2015 [34]. For each 
FFPE tumor sample, a hematoxylin and eosin (HE) or 
hematoxylin-eosin-safran (HES) stained slide marked up 
by a pathologist was used as a reference slide to delimit 
tumor-enriched areas. DNA was extracted from areas 
with ≥ 50% tumor content when possible. These areas 
were macro-dissected from at least two 8μm correspond-
ing methyl green stained sections. Tumor tissues were 
first incubated with Proteinase K for 48h (replenished 
with 20µL at t = 24h), then DNA was extracted using the 
QIAamp DNA FFPE Tissue Kit following manufacturer’s 
instructions (QIAGEN, Hilden, Germany). The tumor 
DNA was eluted twice in 15µL elution buffer to obtain 
a final volume of 30µL, and DNA concentration was 
assessed using the Qubit dsDNA BR assay (Life Technol-
ogies, Carlsbad, CA, USA).
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Genome-wide methylation profiling
Genome-wide methylation profiling of all samples was 
performed in the Precision Medicine molecular genom-
ics facility at Monash University. We used a previously 
described in-house experimental workflow to perform 
sodium bisulfite conversion and DNA restoration on 
FFPE tumor samples [34]. Briefly, FFPE tumor DNA 
quality was assessed by quantitative-PCR (qPCR) using 
the Infinium HD QC assay (Illumina, San Diego, CA, 
USA). All samples were assayed in duplicate. The non–
bisulfite converted, unrestored U266 multiple myeloma 
cell line DNA was used as a negative control. The differ-
ence in quantification cycle (Cq) value (ΔCq) was deter-
mined by subtracting the average Cq value of each DNA 
sample from the average Cq value of the negative control. 
All samples with a ΔCq ≥4 were progressed through the 
sodium bisulfite conversion. Depending on the DNA con-
centration, a minimum of 50ng of DNA and a maximum 
of 750ng of DNA was sodium bisulphite converted using 
the EZ DNA Methylation-Gold™ Kit (Zymo Research, 
Irvine, CA, USA) and was restored using the Infinium 
HD FFPE DNA Restore kit (Illumina, San Diego, CA, 
USA). Successful conversion and restoration were veri-
fied by qPCR using a primer pair specific for bisulfite-
converted DNA. Tumor DNA samples amplified at least 
4 cycles earlier than the negative control (non-converted 
DNA) were progressed to the whole-genome amplifica-
tion and the hybridization onto the Illumina Infinium 
HumanMethylationEPIC (EPIC) (all CoF-AT and GEN-
ESIS and 15 ABCFS samples) or the Illumina Infinium 
HumanMethylation450K (450K) BeadChips (43 ABCFS 
samples and all MCCS samples) (Illumina, San Diego, 
CA, USA).

The EPIC and 450K assays were performed on tumor 
DNA samples as per the manufacturer’s instructions. 
The Freedom EVO automated liquid handler (TECAN, 
Månnedorf, Switzerland) was used for extension and 
staining steps. The BeadChips were scanned using the 
iScan machine (Illumina, San Diego, CA, USA). Raw 
methylation data, corresponding to the red and green sig-
nals measured for each probe, were stored in.IDAT files.

RNA sequencing
Tumor RNA was extracted from tumor-enriched areas 
delimited from the most representative HES slides of 
the FFPE block (with ≥ 50% tumor content when pos-
sible). Three 10-µm-thick sections from each block were 
macrodissected and tumor RNA was isolated using the 
NucleoSpin Tissue protocol which includes a DNA diges-
tion step (Macherey-Nagel, Düren, Germany). RNA 
concentration and RNA purity were assessed using the 
Nanodrop instrument (Nanodrop, Indianapolis, In, 
USA). To assess RNA quality, the DV200 (percentage 
of RNA fragments ≥ 200  bp) was measured using the 

Bioanalyzer 2100 (Agilent Technologies, Santa Clara, 
CA, USA). Capture-based libraries were prepared using 
the TruSeq RNA Exome kit (Illumina, San Diego, CA, 
USA) from an input of 100ng of tumor RNA as recom-
mended by the manufacturer’s instruction. Capture of 
coding RNA was then paired-end sequenced on the 
HiSeq2500 instrument (Illumina).

Methylation data preprocessing
Methylation data were pre-processed using the Biocon-
ductor package minfi (version 1.40.0) [35]. The pipeline 
is detailed in Figure S1. Briefly, only probes present on 
both EPIC and 450K BeadChips were considered in the 
analyses. Samples with 10% of probes with a detection 
p-value > 1% and probes with a detection p-value > 1% 
in at least 10% of the control samples were excluded. 
Cross-reactive probes and polymorphic probes, map-
ping to cytosine or guanine with single nucleotide poly-
morphisms on either strand were removed [36, 37]. 
To normalize DNA methylation data across samples, 
the functional normalization [38] was then applied 
using the preprocessFunnorm function from minfi with 
default parameters. Probes on sexual chromosomes were 
excluded.

DNA methylation level of each CpG site 
was calculated as “β values” (corresponding to 

methylated signal
methylated + unmethylated signals ). β values range from 0 

to 1, where 0 indicates unmethylated and 1 fully meth-
ylated CpG. Because β values have severe heteroscedas-
ticity for highly methylated or unmethylated CpGs sites 
[39], M values corresponding to log2( β

1 − β
), were used 

for the subsequent statistical analyses, after removal of 
probes with generated infinite values.

To obtain the mean level of methylation of each pro-
moter, probes were mapped to promoters defined as 
between 1.5  kb upstream and 500  bp downstream the 
first base of the first exon of the genes according to the 
GRCh38.p5 human genome assembly using bedtools 
[40]. β values of probes belonging to same promoter were 
averaged (NB: for genes less than 500  bp long, only the 
upstream part was considered as promoter). Gene name 
symbols were recovered using the biomaRt R package 
[41].

Unsupervised clustering
Unsupervised clustering was performed with the R umap 
package [42] (version 0.2.7) using the 10,000 most vari-
able probes based on interquartile ranges. The Pearson2 
distance was used to calculate the distance between data 
points.
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Identification of differentially methylated promoters
Differentially methylated (DM) promoters were identified 
by moderated t-statistics. A linear model was first fitted 
for each promoter using the lmFit function of the limma 
R package [43], with the number of probes mapped to 
each promoter being used as weight. T-statistics were 
then computed with the eBayes function and multiple 
testing correction was performed using the Benjamini 
and Hochberg method [44]. An adjusted p-value of 0.05 
and an absolute log2(fold change) (log2FC) of 1 (corre-
sponding to a 2-fold difference in methylation level) were 
used as thresholds to identify DM promoters, thus defin-
ing hypomethylated (log2FC < 1) and hypermethylated 
(log2FC > 1) promoters.

Gene set enrichment analyses
Gene Set Enrichment Analyses (GSEA) [45] were per-
formed with the clusterProfiler R package (version 4.2.2) 
[46] using gene promoters ranked according to log2FC 
x the number of probes mapped to each promoter, and 
pathways annotation from the KEGG database (​h​t​t​p​​s​:​/​​/​
w​w​w​​.​k​​e​g​g​​.​j​p​​/​b​r​i​​t​e​​/​b​r​0​8​9​0​1) [47–49]. P-values were ​c​o​r​r​
e​c​t​e​d for false discovery rate (FDR) using the Benjamini-
Hochberg correction, with the significance threshold set 
to 0.05. These analyses resulted for each significant path-
way in an Enrichment Score (ES), a normalized ES (NES) 
and a core enrichment list of genes contributing the most 

to the pathway enrichment. The EnrichmentMap Cyto-
scape app [50, 51] was used for enrichment map visual-
ization. Similarity between two gene sets was calculated 
using a composite score that integrated Jaccard and over-
lap metrics, resulting in a network visualized with the 
“prefused force directed layout”.

Identification of biomarkers predictive of tumors arising in 
ATM PV carriers
A machine learning approach was used to identify a set 
of promoters whose methylation status was predictive of 
tumors arising in ATM PV carriers. Three models were 
used for classification of the tumors and features selec-
tion with a stratified 4-fold procedure: a logistic regres-
sion, a random forest and the XGBoost [52] model. 
Analyses were performed with Python version 3.9.12 
and scikit-learn version 1.0.2. Datasets being imbalanced 
between tumors from patients carrying and not carry-
ing ATM PVs, classification performances were reported 
using the Matthews Correlation Coefficient (MCC) score 
[53] (Supplementary Material).

Transcriptome analysis
RNA-Seq data were pre-processed using the RNA-Seq 
pipeline version 4.1.0 developed at Institut Curie, (​h​t​t​p​​s​:​/​​
/​z​e​n​​o​d​​o​.​o​​r​g​/​​r​e​c​o​​r​d​​s​/​1​3​7​4​4​4​4​1). The main steps involved: 
(1) the identification and the suppression of ribosomal 
RNA reads with the bowtie1 aligner, (2) the alignment on 
the hg38 reference genome of the remaining reads with 
STAR, and (3) the generation of count tables with STAR. 
Transcripts Per Million (TPM) were then used to assess 
the correlation between gene expression and gene pro-
moter methylation for the samples for which both types 
of data were available, and the Pearson correlation coef-
ficient was calculated.

Results
Histopathological and clinical features of investigated 
tumor series
After pre-processing and quality control (QC) of DNA 
methylation data, 32 out of 35 tumors from ATM vari-
ant carriers (Table  1) and 484 out of 489 tumors from 
noncarriers were kept in the analyses. Clinical and his-
tological characteristics of these tumors are presented 
in Table 2. The mean age at BC diagnosis was 45.6 years 
(range: 28–75) for ATM PV carriers and 61.5 years 
(range: 25–82) for noncarriers. The difference in age at 
diagnosis between the two groups was significant (Wil-
coxon test, adjusted p-value: 1.2 × 10− 9). The mean time 
between tumor sampling and methylation measurement 
(age of the tumor blocks) was also significantly different 
between carriers and noncarriers. Indeed, BCs were diag-
nosed between 1989 and 2017 for ATM PV carriers and 
between 1992 and 2016 for noncarriers (Wilcoxon test, 

Table 2  Comparison of clinical and histological characteristics of 
ATM and non-ATM tumors, after quality controls
Characteristics ATM tumors (N = 32) Non-ATM tu-

mors (N = 484)
ATM variant type PV (N = 27) VUS (N = 5) –
Age at diagnosis
  Mean [range] 45.6 [28–75]‡ 55.0 [41–66] 61.5 [25–82]
  SD 11.1 11.5 11.1
Year of diagnosis
  Mean [range] 2003 

[1989–2017]&
2007 
[2004–2009]

2000 
[1992–2016]

  Median 2006 2007 2000
ER status
  Positive 23 (85.2%)¶ 4 (80.0%) 350 (72.3%)
  Negative 3 (11.1%) 0 (0%) 107 (22.1%)
  Unknown 1 (3.7%) 1 (20%) 27 (5.6%)
Grade
  I 3 (11.1%) 1 (20%) 99 (20.5%)
  II 12 (44.4%)§ 4 (80%) 186 (38.4%)
  III 9 (33.3%)§ 0 (0%) 171 (35.3%)
  Unknown 3 (11.1%) 0 (0%) 28 (5.8%)
‡Significantly different from non-ATM tumors (Wilcoxon test, adjusted p-
value: 1.2 × 10− 9). & Significantly different from non-ATM tumors (Wilcoxon test, 
adjusted p-value: 1.8 × 10− 2). ¶Proportion significantly different between ATM 
and non-ATM tumors (right-tailed two-proportions z-test, adjusted p-value: 
0.12). §Proportion significantly different between ATM and non-ATM tumors 
(right-tailed two-proportions z-test, adjusted p-value: 0.21). SD: standard 
deviation; ER: estrogen receptors; PV: pathogenic variant; VUS: variant of 
uncertain clinical significance

https://www.kegg.jp/brite/br08901
https://www.kegg.jp/brite/br08901
https://zenodo.org/records/13744441
https://zenodo.org/records/13744441
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adjusted p-value: 1.8 × 10− 2). Therefore, we first checked 
that age at diagnosis and age of the tumor block do not 
represent confounding factors when comparing methyla-
tion profile of ATM and non-ATM tumors. As no clus-
tering of the tumors according to these two variables was 
observed, we concluded that these factors were unlikely 
to bias the subsequent analyses (Figure S2).

Among tumors with known ER/grade status, 88.4% of 
tumors of ATM PV carriers and 76.6% of tumors of non-
carriers were ER+, 87.5% of tumors of ATM PV carriers 
and 78.3% of tumors of noncarriers were of grade II or 
III. These proportions were not significantly different 
(right-tailed two-proportions z-test, adjusted p-value: 
0.12 for ER status and 0.21 for grade).

Because ER+ and ER- tumors showed different 
genome-wide methylation profiles (Figure S3), we 
focused the subsequent analyses on ER + tumors (25 
ATM tumors and 359 non-ATM tumors). Of note, no 
batch effect was observed between ATM and non-ATM 
tumors nor between the French series and the Australian 
series (Figure S4).

ATM promoter is more frequently hypermethylated in ATM 
tumors than in non-ATM tumors
We first examined the methylation status of ATM pro-
moter in the tumors, as this epigenetic event could be 
implicated in the inactivation of the second allele of ATM 
in tumors of heterozygous PV carriers, following the 
Knudson two-hit hypothesis for tumor suppressor genes 
[54]. In tumors of noncarriers, the mean methylation 
level of ATM promoter was -4.15 (standard deviation: 
0.51). Using this mean methylation level as a reference, 
we found that ATM promoter was more frequently hyper-
methylated in tumors of heterozygous PV carriers (13/21 
tumors) than in tumors of noncarriers (58/350), and that 
this difference was significant (Wilcoxon test, adjusted 
p-value: 8.6 × 10− 7, Fig. 1A). After exclusion of 6 tumors 
of heterozygous carriers showing LOH at the ATM locus 
(Table  1), ATM promoter was found hypermethylated 
in 53.3% (8/15) of tumors of ATM PV carriers, and the 
level of methylation of ATM promoter remained signifi-
cantly higher than in non-ATM tumors (Wilcoxon test, 
adjusted p-value: 2.1 × 10− 4) (Fig. 1B). Interestingly, ATM 

Fig. 1  ATM promoter is hypermethylated in ER+ tumors of ATM heterozygous pathogenic variant carriers. (A) All tumors of ATM heterozygous PV carriers 
were considered in the analysis (N = 21). (B) Only tumors where LOH at the ATM locus had not been reported were considered in the analysis (N = 15). Red 
dots indicate the mean of ATM promoter methylation for each tumor category; the horizontal bars indicate the mean ± the standard deviation of the ATM 
promoter methylation of non-carriers
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promoter was also hypermethylated in breast tumors of 
carriers of VUS c.1009C>T, c.5882A>G and c.6059G>T, 
which could be used as evidence for pathogenicity of 
these variants (Table S1).

Because we could not verify in any of the tumors that 
the higher methylation level affected the wild-type allele, 
we conducted two types of analyses in the remaining part 
of the work: the main analyses compared ER+ tumors of 
PV carriers to ER+ tumors of noncarriers, and the sec-
ondary analyses compared only tumors of PV carriers 
with (probable) inactivation of the second ATM allele 
in the tumor, either because they were tumors of A-T 
patients, or tumors showing LOH at the ATM locus, or 
tumors showing hypermethylation of ATM promoter 
(Table S1).

Genome-wide DNA promoter methylation analysis
After preprocessing and QCs of the methylation data, 
118,796 probes mapped to 22,337 gene promoters (Fig-
ure S1).

In the main analysis, we found 327 promoters differ-
entially methylated between ER+ tumors of PV carriers 
and noncarriers, with 238 (72.8%) of them being hypo-
methylated in ATM tumors (Table S2). In this analysis, 
the log2FC for ATM promoter was 0.66, which means 
that ATM promoter is 1.6 times more methylated in 
tumors from ATM variant carriers than in tumors from 
noncarriers. The heatmap built using the 327 DM pro-
moters allowed to cluster all ATM tumors. Tumors of 
carriers of the VUS c.1009C>T, c.5882A>G, c.1464G>T 
and c.6059G>T clustered among tumors of PV carriers, 
which would be also an indication in favor of pathogenic-
ity (Fig. 2).

In the analysis restricted to ATM tumors with prob-
able biallelic inactivation of ATM, the number of DM 
promoters increased to 773, which supports the Knudson 
second-hit hypothesis in ATM tumors. Among them, 315 
(41%) promoters overlapped with those identified in the 
main analysis (Table S2).

Correlation between promoter methylation and gene 
expression in ATM tumors
Since DNA methylation is one of the main epigenetic 
mechanisms for the regulation of gene expression, we 
next investigated the potential correlation between pro-
moter methylation level and TPM values of expressed 
genes in the 10 tumors of ATM PV carriers for which 
RNA-Seq data and methylation data were available 
(annotated in Table S1). In the main analysis, only DM 
promoters of genes SCGB3A1, CYBRD1, ARHGAP40 and 
GJA1 showed high negative correlation with gene expres-
sion in the tumor (absolute r > 0.7 and p-value < 0.05) 
(Figure S5.A). When restricting the analysis to tumors 
with probable biallelic inactivation of ATM, SCGB3A1, 

CYBRD1 and 22 additional genes showed negative corre-
lation with gene expression and five genes with positive 
correlation with gene expression (Figure S5.B). Hence 
these combinations of DNA methylation/gene expres-
sion markers may represent good candidate biomarkers 
of tumors arising in ATM PV carriers.

Enriched pathways in ATM tumors
To gain a biological systems-level understanding of the 
changes in methylation between tumors arising in ATM 
and non-ATM PV carriers, we next performed a GSEA to 
identify biological pathways enriched in DM genes. Out 
of the 357 tested KEGG pathways, 47 were significantly 
enriched in ER+ tumors of ATM PV carriers (Fig. 3 and 
Table S3). Forty-two pathways were significantly enriched 
when restricting the analysis to tumors with probable 
biallelic inactivation of ATM, including 39 pathways 
common two both analyses. Among enriched pathways 
in which ATM is part of the core enrichment, top path-
ways included homologous recombination (hsa03440), cell 
cycle (hsa04110), platinum drug resistance (hsa01524), 
cellular senescence (hsa04218), p53 signaling (hsa04115), 
shigellosis (hsa05131), Human papillomavirus infection 
(hsa05165) and Human T-cell leukemia virus 1 infection 
(hsa05166).

Enrichment maps built using the core enrichment pro-
moters of these pathways highlighted two “master path-
ways” enriched in ER+ tumors of ATM PV carriers, the 
largest one regrouping 15 pathways involved in several 
cancer types and viral infection, the second one regroup-
ing 8 pathways involved in neurodegenerative diseases 
or metabolic functions known to be involved in cancer 
development (Figure S6).

DNA methylation biomarker panels predictive of ATM 
tumors
We next employed three machine learning methods 
(logistic regression, random forest and XGBoost) to 
identify a set of promoters allowing to discriminate 
ATM tumors from non-ATM tumors (feature selection 
procedure detailed in Figure S7 and in Supplementary 
Material). For each repetition and classifier, identified 
promoters allowed to predict tumors arising in ATM 
PV carriers and non-ATM PV carriers of the validation 
set with precision, recall, f1 score, MCC and specificity 
equal or above 0.8 (Table S4). In the main analysis, the 
classifier based on logistic regression identified eight 
promoters (INTS6P1, PTDSS2, RPL36AP30, SCAPER, 
ARF4, AMPD3, FLT4 and POLR2L). The classifier based 
on XGBoost identified, in addition to these eight pro-
moters, promoters of SNORA14A, RFX1, AADACL4 
and PDIA3P2, while the classifier based on random for-
est identified a list of 21 promoters with only promot-
ers of INTS6P1, ARF4, PDIA3P2, RPL36AP30, SCAPER, 
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POLR2L present in the former lists. The good classifi-
cation performances obtained with these three lists of 
genes are illustrated in Fig. 4.

To ensure that the identified biomarkers were not ran-
domly selected by the models, we compared these results 
to the classification performance of 20 randomly selected 
promoters, repeating the analysis 1000 times. The MCC 

mean of all 1000 repetitions was below 0.7, confirming 
that the DM promoters selected by the three machine 
learning approaches are biomarkers specific to ATM 
tumors.

Using the respective three lists of genes identified by 
the three ML methods, the classifiers based on logis-
tic regression and on random forest models classified 

Fig. 2  Tumors from patients with and without ATM PVs display a different genome-wide methylation pattern
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tumors from carriers of VUS c.1009C>T, c.5882A>G, 
c.1464G>T and c.6059G>T as ATM tumors, while the 
classifier based on XGBoost model classified the tumor 
of carrier of VUS c.6059G>T as a non-ATM tumor in 1 
out of the 6 repetitions, and the tumor of carrier of VUS 
c.5882A>G as a non-ATM tumor in 5 out of the 6 repeti-
tions (Table S5 and Table S6). However, heatmaps built 
with these biomarkers showed that tumors of the four 

VUS carriers clustered with tumors of PV carriers, which 
again provides evidence in favor of the pathogenicity of 
the variants (Fig. 4). Interestingly, in each of these visu-
alizations, the non-ATM tumor ABCFS17 clustered with 
ATM tumors, and was also predicted as an ATM tumor 
when used in the validation set by logistic regression 
and random forest models (Table S6), which suggests a 
somatic biallelic inactivation of ATM in this tumor.

Fig. 3  Pathways enriched in genes showing aberrant methylation of promoters in ATM tumors
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Discussion
This study reports the first characterization of the DNA 
methylation profile of tumors developed by women 
with ATM PVs. These tumors were compared to tumors 
arising in women without ATM PVs participating in a 

population-based study of BC (ABCFS) and a prospective 
cohort (MCCS) with the same clinical and histopatholog-
ical information.

Because 88% of the investigated tumors arising in 
women with ATM PVs were ER+ (in accordance with 

Fig. 4  Methylation of promoters selected by ML methods allow to cluster ER+ tumors from ATM variant carriers. (A) Logistic regression. (B) random forest. 
(C) XGBoost
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previous findings [11, 12, 18–21]), and because we 
confirmed that the ER status is a confounding fac-
tor in the genome-wide DNA methylation analysis of 
breast tumors, we focused our analyses on this group of 
ER+ tumors. We showed that tumors of ATM PV carriers 
had a global hypermethylation of the ATM promoter as 
compared to tumors of noncarriers. Hence hypermeth-
ylation of ATM promoter may be useful as a potential 
new biomarker to identify BC tumors arising in ATM 
PV carriers. We could not further investigate here the 
correlation between ATM hypermethylation and ATM 
expression in ATM tumors because RNA-Seq data of the 
tumors without ATM PVs were not available to serve as 
control dataset. However, others reported an association 
between ATM promoter hypermethylation and lower 
expression of ATM mRNA in tumors from sporadic BC 
cases [55–57].

Although the use of DNA methylation arrays did not 
enable an allele-specific measurement of methylation, 
we can reasonably hypothesize that the observed hyper-
methylation of ATM promoter leads to the inactivation of 
the wild-type allele. Indeed, the secondary analyses per-
formed on the subgroup of tumors with ATM PVs with 
a confirmed or probable biallelic inactivation of the gene 
identified 315 out of the 327 DM promoters (96.3%) of 
the main analysis and 458 new DM promoters, which is 
in agreement with our hypothesis that methylation alter-
ations are accumulated in ATM-deficient breast tumors.

Activation of oncogenes and repression of tumor sup-
pressor genes can be caused by aberrant hypo- or hyper-
methylation. In a meta-analysis investigating methylation 
profiles of normal and cancerous samples from multiple 
tissues from TCGA, a weak association between the 
hypermethylated signatures and gene expression repres-
sion was reported overall. High correlation between 
DNA methylation and gene expression variations was 
identified for a subset of genes in some specific can-
cer types making these methylation marks potentially 
important biomarkers for these cancers [58]. In line with 
these observations, among the genes with DM promoters 
between tumors with and without ATM PVs, those show-
ing a high negative correlation between methylation and 
gene expression are of particular interest when search-
ing for biomarkers of ATM deficiency. This was the case 
for SCGB3A1 (HIN-1), CYBRD1 (DCYTB), ARHGAP40 
identified as hypermethylated in both analyses, and GJA1 
identified only in the main analysis. SCGB3A1 which 
encodes the Secretoglobin Family 3  A, Member 1 may 
play a tumor suppressor role in several cancers includ-
ing breast cancer [59], prostate cancer [60], lung cancer 
[61] and non-small cell lung cancer [62], as its expression 
has been noted to be markedly lower in cancer tissues 
compared to normal tissue [63]. In BC, SCGB3A1 gene 
methylation status has been proposed as a biomarker of 

prognosis and progression [64] and its promoter hyper-
methylation was found significantly associated with 
ER + and progesterone receptor (PR) + tumors [65, 66]. 
CYBRD1 which encodes the cytochrome b reductase 1, 
was found to be a prognostic predictor for BC and may 
“retard cancer progression by reducing activation of 
FAK, a kinase that plays a central role in tumor cell adhe-
sion and metastasis” [67]. Its promoter hypermethylation 
and expression inhibition may be connected to a faster 
development of BC. Little is known about the role of 
ARHGAP40 encoding the Rho GTPase activating protein 
40 in cancer, but the hypermethylation of its promoter 
has been correlated with a loss of ARHGAP40 expres-
sion in basal cell carcinoma [68]. Finally, in ER+ BC, a 
high expression of GJA1 has been associated with a bet-
ter prognosis [69]. A link with GJA1 expression and other 
cancers has also been reported. It was correlated with a 
higher level of immune infiltrating cells and a good prog-
nostic in colorectal cancer [70]. However, in cervical 
cancer, GJA1 expression has been associated with a poor 
survival [71]. Of note, GJA1 is also a key regulator of 
the pathogenesis of Alzheimer’s disease [72], a pathways 
found highly enriched in ATM tumors. Our study sug-
gests that the hypermethylation of SCGB3A1, CYBRD1, 
ARHGAP40 promoters and the hypomethylation of GJA1 
are biomarkers of ATM tumors.

Regarding the 47 KEGG pathways found to be dysregu-
lated by aberrant methylation patterns, all of them were 
found enriched in hypermethylated (and not in hypo-
methylated) promoters, in agreement with the common 
hypothesis that promoter hypermethylation inactivates 
tumor suppressor genes during tumorigenesis. Interest-
ingly, the homologous recombination pathway was highly 
enriched in DM gene promoters in ATM tumors while 
in a previous study the mutational signature 3 associated 
with defective homologous recombination DNA (HRD) 
repair was not highlighted in tumors of ATM PV carri-
ers [19]. The other pathways linked to the DNA Damage 
Response (DDR) which were also enriched in hypermeth-
ylated promoters in tumors arising in ATM PV carriers 
in our study were: the Fanconi anemia pathway, involved 
in repairing inter-strand crosslinks in DNA and critical 
for genome stability, the Tumor Necrosis Factor signal-
ing pathway, which can promote or inhibit cancer pro-
gression, and the p53 signaling pathway recognized as a 
tumor suppressor pathway due to its central role in DDR 
by activating various downstream cellular processes 
involved in DNA repair, cell cycle arrest and apoptosis. 
Furthermore, enrichment map based on these enriched 
pathways illustrates that the specific methylation pat-
tern of ATM tumors leads to pleiotropic defects alter-
ing known biological functions involving ATM such as 
cancerous, neurodegenerative and metabolic functions. 
It has been long demonstrated that ATM is central in 
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cancer development [9, 73] through its role of sensing 
DNA damages and activating cascades of effectors of the 
DDR response [74]. Some viral infections being known 
to induce DNA double-strand breaks and several types 
of cancers [75], it is not surprising to find enriched path-
ways linked to viral infections. ATM is also activated by 
oxidative stress to maintain redox homeostasis through 
the regulation of central carbon metabolism. In neu-
rological diseases, such as Alzheimer’s or Huntington’s 
diseases, the overactivation of the microglia releases 
reactive oxygen species which in turns activates ATM 
[76, 77]. Alterations of the neurodegenerative and meta-
bolic/ROS functions are indeed related to symptoms of 
A-T patients [76].

Finally, ML approaches allowed to identify a set of 27 
promoters that are highly discriminative of tumors devel-
oped by ATM PV carriers. Among those, INTS6P1 and 
ARF4 were found by the three ML methods employed. 
Four of the 27 DM genes (AMPD3, ARF4, PTDSS2, 
TAS2R14) are linked to metabolism and viral infec-
tions and 7 are linked to neoplastic mechanisms (ARF4, 
CSTB, FLT4, INTS6P1, MIR1266, RFX1, TAS2R14), thus 
related to the KEGG pathways found enriched in the 
GSEA. However, no correlation was observed between 
gene promoter methylation and gene expression for these 
27 genes in our dataset. Furthermore, these biomarkers 
may help in the classification of VUS. Interestingly, one 
tumor that is not known to carry an ATM PV showed a 
methylation pattern resembling that of ATM PV carriers, 
suggesting a somatic biallelic alteration of ATM. These 
results will need to be replicated in an independent data-
set or with functional analyses to determine their clinical 
relevance, some drugs being already available such aza-
thioprine and mercaptopurine to target AMPD3, a mem-
ber of nucleoside metabolic pathways.

The main limitation of this study is the lack of a rep-
lication dataset. We attempted to replicate our findings 
in the TCGA-BRCA [78] dataset, in which we identified 
30 tumors from ATM variant carriers (9 PV and 21 VUS) 
and 478 tumors from noncarriers, but no promoters were 
differentially methylated between the two groups, which 
did not confirm our results. This non replication may be 
due to the protocols used for samples preparation: in our 
study, DNAs were prepared from tissue samples enriched 
in tumoral cells which was not the case for TCGA-BRCA 
samples. Thus, micro-environmental/normal tissue cells 
in TCGA-BRCA samples may have attenuated the signal 
of the epigenetic modifications due to ATM inactivation 
detected in tumoral cells in our study.

While we provide supplementary information for the 
characterization of breast tumors developed by ATM 
variant carriers, the genome-wide DNA methylation pat-
tern of ATM tumors may not be sufficient to capture their 
full biological complexity, and other types of alterations, 

such as in gene expression and post-transcriptional 
modifications should be investigated. The integration of 
different biological omics data may help in understand-
ing this biology and bring out stronger biological signals 
that may not be detectable with the analysis of a single 
omics layer or single genomics approach (i.e. gene panel 
sequencing) [79].

Conclusion
To conclude, breast tumors from ATM PV carriers have 
a recognizable genome-wide DNA methylation pattern 
which targets genes involved in neoplastic, neurodegen-
erative and metabolic-related pathways, in which ATM is 
also involved.

Three ML methods identified a panel of methylation 
biomarkers that can be helpful in the identification of 
ATM-deficient breast tumors outside a familial genetic 
context (A-T or HBOC families) because DNA meth-
ylation pattern alterations are one of the earliest modi-
fications occurring in tumorigenesis. Moreover, such 
biomarkers may represent specific therapeutic targets. 
Additional functional analyses or replicating studies are 
needed to assess the relevance of these biomarkers and 
pathways as potential therapeutic targets.
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