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Abstract 

During breast tumor progression, the transition from ductal carcinoma in situ (DCIS) to invasive breast cancer is a criti-
cal step with large implications for prognosis. However, the mechanisms of invasion are still largely unknown. At 
the DCIS stage, there is an over-representation of HER2-positive lesions compared with invasive breast cancer. In this 
study, we investigated the associations between gene expression profiles in cancer cells and the immune microen-
vironment of HER2-positive DCIS and invasive breast tumors with concurrent DCIS using spatial transcriptomics. We 
found distinctly more B cells in the vicinity of DCIS ducts than in invasive tumor areas. There was higher expression 
of genes involved in energy metabolism in DCIS cancer cells than in invasive cancer cells and a positive correlation 
between expression of metabolic genes and B-cell abundance in DCIS. In contrast were processes related to epithelial 
to mesenchymal transition negatively correlated with B-cell abundance in DCIS. We also found significant correla-
tion between expression of the B-cell-attracting chemokines CCL19, CCL21 and CXCL13 in stromal cells and B cell 
abundance in DCIS. This study indicates that B cells may play a protective role in the progression of HER2-positive 
DCIS to invasive breast cancer and that increased metabolic activity in intraductal cancer cells in combination 
with chemokines produced by stromal cells may influence the immune microenvironment of DCIS. These findings 
have implications for understanding HER2-positive breast cancer progression.
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Background
In ductal carcinoma in  situ (DCIS), cancer cells are 
confined within the mammary gland ducts. As such, 
these lesions are indolent and are considered clinically 

manageable with excellent prognoses [1, 2]. DCIS 
is generally accepted as a non-obligate precursor to 
invasive breast cancer [3]. Since the implementation 
of mammographic screening, the number of detected 
DCIS cases has increased, followed by an increase in the 
number of patients treated for DCIS [4, 5]. Most DCIS 
cases are treated surgically with or without adjuvant 
radiotherapy, resulting in very low recurrence rates [5]. 
However, if left untreated, many DCIS lesions never 
develop into invasive disease, indicating substantial 
overtreatment of patients diagnosed with DCIS [6, 7]. 
While there is much knowledge about prognostic and 
predictive biomarkers for invasive disease, there are no 
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sufficiently good biomarkers for the invasive potential of 
DCIS [2].

The progression from DCIS to invasive ductal car-
cinoma (IDC) involves degradation of the basement 
membrane followed by invasion of cancer cells into 
surrounding tissue. This critical step may be initiated 
by the cancer cells, but a permissive tumor microen-
vironment is likely facilitating invasion, including 
changes in the myoepithelium and stromal cells [8–
11]. Immune cells may play dual roles in the progres-
sion from DCIS to IDC, either by facilitating invasion 
or by detecting and destroying DCIS cancer cells that 
escape the mammary duct so that only cancer cells 
that outsmart the immune response are able to invade 
the stroma [11]. Additionally, mechanical forces and 
metabolic adaptations may contribute to invasion [12, 
13].

The relevance of the intrinsic molecular subtypes in 
IDC is well known [14, 15], and several studies have 
explored these subtypes in DCIS [16–18]. An inter-
esting observation from such studies is the distinct 
over-representation of HER2-positive DCIS compared 
with IDC, which contrasts the aggressive phenotype 
that HER2-positive tumors display in invasive disease 
[19, 20]. The reason for this apparent delayed inva-
sion of HER2-positive DCIS is diverse and probably 
includes both cancer cell-intrinsic and -extrinsic fac-
tors. Immune cell recruitment to the surroundings of 
DCIS lesions may be of particular importance. Over-
all, HER2-positive DCIS has more tumor-infiltrating 
lymphocytes than does HER2-negative DCIS [21, 22]. 
Studies have shown that immune infiltrates in DCIS 
include a greater proportion of B cells than those in 
IDC, where T cells and macrophages dominate [23, 
24]. B cell abundance is associated with HER2 positiv-
ity in DCIS, and B cells are often located in interductal 
immune cell aggregates [24, 25]. The reason for these 
variations in immune cell infiltration across DCIS 
subtypes is not known, but inherent molecular char-
acteristics of intraductal cancer cells likely contribute 
to shaping the immune microenvironment and the 
attraction of different immune cells [26, 27].

In this study, we used spatial-omics methods to study 
HER2-positive pure DCIS and invasive breast tumors 
with concurrent DCIS. We mapped the degree of 
intratumoral heterogeneity, characterized the immune 
response and investigated the associations between 
gene expression in cancer cells and the stromal 
immune response. We detected a markedly greater 
abundance of B cells surrounding DCIS lesions, which 
correlated with the activation of specific metabolic 
pathways in intraductal cancer cells. These results may 

contribute to improving our understanding of the risk 
of invasion in HER2-positive breast cancer.

Materials and methods
Selection of cases
Formalin-fixed paraffin-embedded (FFPE) tissue blocks 
from grade 3 pure DCIS tumors and invasive breast 
tumors with concurrent DCIS (mixed invasive tumors) 
were obtained from the diagnostic biobank of Oslo Uni-
versity Hospital and from Istituto Nazionale dei Tumori, 
Milan, Italy. Histopathological diagnosis was confirmed 
by a pathologist using routine diagnostic criteria. Based 
on immunohistochemistry (IHC) and tumor morphol-
ogy, eight HER2-positive cases (IHC 3+) harboring suffi-
cient amount of tissue with intraductal cancer cell growth 
from each tumor type were selected, in total 16 cases. 
Tumors were not matched for any other clinicopatho-
logical factors. The samples were deidentified, and their 
use in research was approved by the institution’s internal 
review and ethics boards (approval numbers: 2016/433 
(Oslo, Norway) and PG/U-25/01/2012-00001497 (Milan, 
Italy)).

Immunohistochemistry
FFPE tissue was sectioned at 4  µm, and immunohis-
tochemistry was performed according to a previously 
described protocol [28]. Antigen retrieval was performed 
using a steamer for 40  min in 10  mM sodium-citrate 
buffer (pH 6.0). The tissue was incubated with primary 
antibodies (anti-CD19, Cell Signaling, #90176, dilution 
1:200, and anti-HER2, Roche, #790–4493, dilution 1:150) 
overnight before being incubated with secondary anti-
bodies (Goat Anti-Rabbit IgG Antibody (H + L), Bioti-
nylated, #BA-1000-1.5, dilution 1:25) and visualized with 
3,3′-diaminobenzidine (DAB) substrate and hematoxylin 
counterstain.

Spatial transcriptomics
Spatially resolved gene expression data were obtained 
using Nanostring’s GeoMx Digital Spatial Profiler with 
the Cancer Transcriptome Atlas assay [29–31]. This assay 
yields gene expression data for approximately 1800 genes 
and is designed to comprehensively profile tumor biol-
ogy, including the tumor microenvironment and immune 
response. Digital spatial profiling was performed through 
Nanostring’s Technology Access Program in Seat-
tle, USA, according to the vendor’s recommendations. 
Briefly, 4 µm tumor sections were placed on SuperFrost 
Plus slides with two cases per slide (eight slides in total). 
To identify relevant regions of interest (ROIs), we used 
three fluorescently labeled morphology markers: pan-
cytokeratin (PanCK, Novus #NBP2-33200DL594, clone 
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AE1/AE3, dilution 1:400) to detect epithelial (cancer) 
cells; CD45 (Cell Signaling Technology #13917BF, clone 
D9M8I, dilution 1:100) to detect immune cells; and 
smooth muscle actin (SMA, Invitrogen, #53–5760-82, 
clone 1A4, dilution 1:400) to detect myoepithelial cells, 
endothelial cells and myofibroblasts, in addition to the 
nuclear marker Syto-83 (dilution 1:25). The slides were 
baked for 2  h at 60  °C and deparaffinized before being 
subjected to antigen retrieval for 20  min with BOND 
Epitope Retrieval 2 (Leica Microsystems, #AR9640) and 
proteinase K treatment at 0.1 µg/ml for 15 min. The slides 
were incubated overnight with a high-plex mixture of 
oligo-linked probes and fluorescently labeled morphol-
ogy markers.

Segment selection
During slide preparation, one pure DCIS sample 
detached from the slide and was therefore excluded. 
Segment selection was performed using adjacent H&E-
stained sections as guidance (Suppl. Figure 1). The cancer 
and stromal cell compartments were selected as separate 
segments, with PanCK as a segmentation marker, result-
ing in two segment types: PanCK-positive segments, 
which included epithelial (cancer) cells, and PanCK-
negative segments, which included nonepithelial stroma. 
Owing to the different growth patterns of cancer cells 
in DCIS and invasive tumors, the ROI selection strategy 
differed between areas with intraductal growth (DCIS) 
and those with invasive cancer cells (Suppl. Figure 2). For 
DCIS areas, cancer cell ROIs were placed inside ducts, 
and only PanCK-positive cancer cells were selected. Stro-
mal DCIS ROIs were placed outside the ducts, avoiding 
the basement membrane, and only PanCK-negative cells 
were selected. In invasive areas, where stroma and can-
cer cells are interwoven, ROIs were segmented on the 
basis of PanCK status, creating one cancer cell segment 
and one stroma cell segment within each ROI. After ROI 
selection, the tissue within each segment was illuminated 
with UV light to separate the unique oligos from the 
probes, followed by the collection of oligos. Even though 
UV light-initiated release of probes is highly precise in 
the GeoMx technology [32], an erosion parameter of 2 
µm was set to reduce any potential “bleed-over” between 
cancer cell and stromal segments [33]. In the following, 
segments refer to the unit of cells subjected to sequenc-
ing. Segments from pure DCIS lesions are termed 
 DCISpure, whereas DCIS segments from mixed invasive 
tumors are termed  DCISinv.

RNA sequencing
Library preparation and PCR were performed according 
to the manufacturer’s instructions, and the samples 
were purified twice using AMPure XP Beads (Beckman 

Coulter) at a 1.2X bead-to-sample ratio. Paired-end 
sequencing was performed using NextSeq6000 sequencer 
with an S4 v1.5 35-cycle flow cell (Illumina).

Quality control and normalization
To avoid the potential influence of distinctly different 
expression patterns between cancer and stromal cells 
on data normalization, quality control and normaliza-
tion were performed separately for cancer and stromal 
cells. In addition, a merged dataset including both can-
cer cell and stromal segments was generated for use in 
silico cell type deconvolution. Quality control and nor-
malization were performed in Nanostring’s GeoMX 
software according to the vendor’s recommendations: 
Probes identified as global outliers were removed before 
the geometrical mean of the probes was calculated to 
obtain one value per gene. Next, target (gene) filtering 
was performed, excluding targets expressed above the 
limit of quantitation in fewer than 10% of the segments, 
followed by segment filtering, which excluded segments 
with fewer than 10% of targets above the limit of quanti-
tation. Two stromal segments were removed in this step. 
The final cancer cell dataset included all 55 original seg-
ments and gene expression data for 1162 genes, whereas 
the final stroma dataset included 36 segments and gene 
expression data for 1585 genes (Suppl. Figure 3). Normal-
ization was performed using the Q3 method according to 
current recommendations [34].

Validation dataset
For validation, we used a published dataset includ-
ing bulk tissue samples from 57 DCIS and 313 IDC for 
which gene expression data were obtained using Agilent 
Sureprint G3 Human Gene Expression 8 × 60 K micro-
arrays (#G4851A) (Agilent Technologies, Santa Clara, 
USA) [16]. The cutoff between HER2-high and HER2-low 
samples was set to  log2(ERBB2-expression) = 11, which 
ensured clear separation of the HER2-high and HER2-
low groups in both DCIS and IDC.

Data analysis
Data analyses were performed using R (version 4.4.0) in 
RStudio (version 2024.04.01) [35, 36]. Visualizations were 
made using ggplot2 (version 3.5.1) and Complex Heatmap 
(version 2.20.0) [37, 38]. Hierarchical clustering was 
performed using Euclidean distance metric and complete 
linkage clustering. Principal component analyses, 
Pearson correlation, T tests, Kruskal Wallis tests and χ2 
tests were performed using the stats package (version 
4.4.0) [35]. Differential gene expression analyses of spatial 
data were performed to compare  DCISinv and invasive 
cancer cell segments. To account for multiple segments 
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from the same case, we used mixed models with 
Sample-ID as a random effect. For each gene, a model 
was fitted using the lme4 package (version 1.1.35.3) with 
the formula Gene Expression ̴Tumor Type + (1|SampleID), 
and P values were obtained using Satterthwaite’s 
degrees of freedom method using the lmerTest package 
(version 3.1.3) [39, 40]. No preselection of variables 
was performed prior to differential gene expression 
analyses since the results were used in subsequent gene 
set enrichment analyses (GSEA). False Discovery Rate 
(FDR) was used to correct for multiple testing. GSEA 
was performed using the fgsea package (version 1.30.0) 
with the hallmark gene set collection from the Molecular 
Signatures Database (MSigDB) [41–43]. Single-sample 
GSEA was performed using the method described by 
Barbie et  al. [44]. Visualization of the GSEA results in 
network diagrams was performed using igraph (version 
2.0.3) [45]. Since GeoMx technology yields average gene 
expression within segments and not at the single-cell 
level, immune cell abundance was estimated by in silico 
deconvolution using the SpatialDecon package (version 
1.14.0) with the embedded SafeTME cell profile matrix, 
and specifying which segments contain cancer cells [46, 
47]. In silico cell deconvolution of the validation dataset 
was performed using CIBERSORTx [48] with the same 
cell profile matrix.

CosMx spatial single‑cell protein analyses
Two of the cases (ID-09: pure DCIS; ID-08: mixed inva-
sive tumor) were selected for spatial proteomic analyses 
using Nanostring’s CosMx platform and the immuno-
oncology 64-plex antibody panel. Within each case, 20 
to 25 ROIs of size 0.51  mm × 0.51  mm were analyzed, 
obtaining single-cell protein expression data for all cells 
within the ROI, in total 57,069 cells. Sample processing, 
staining, imaging, and cell segmentation were conducted 
at Nanostring’s CX lab, Amsterdam, following the meth-
odology outlined by the vendor [49]. In brief, 5 µm sec-
tions of FFPE tumor tissue were placed onto Bond Plus 
slides (Leica, #S21.2113.A) and dried overnight at 37 °C, 
vacuum sealed, and stored at 4  °C until analysis. Before 
slide preparation, the slides were baked at 60 °C for 3 h. 
For semiautomated processing of FFPE tissues, the Leica 
BOND RX system was used. The samples were depar-
affinized and subjected to epitope retrieval (20  min in 
ER1 solution), followed by coverslip application, over-
night antibody incubation, and cyclic protein readout 
on the Spatial Molecular Imager (SMI), in accordance 
with NanoString’s recommendations. Visualization 
markers for morphology and cell segmentation (DAPI, 
PanCK, CD45, CD3, and CD298/B2M) were integrated 
into the preparation process. Fiducials solution (200 nm 
fluorescent beads) was included at a concentration of 

5 × 10e−5% for use in glass mapping and tissue identifica-
tion in addition to providing as reference points through-
out the data collection. Cell typing was performed using 
CELESTA [50].

Results
Low intratumoral heterogeneity in HER2‑positive DCIS 
and mixed invasive breast tumors
To explore overall intra- and intertumoral 
heterogeneity, we performed hierarchical clustering 
based on gene expression of all genes, separately 
for cancer cell and stromal segments. Cancer cell 
segments from the same patient clustered together, 
indicating lower intratumoral heterogeneity than 
intertumoral heterogeneity (Fig.  1a). Additionally, 
cancer cell segments from the same mixed invasive 
tumors clustered together, regardless of whether they 
originated from invasive areas or DCIS. For the stromal 
data, segments grouped primarily according to tissue 
type and second according to sample ID (Fig. 1a). The 
low intratumoral heterogeneity was also evident from 
principal component analysis (Suppl. Figure  4A and 
4B).

Increased energy metabolism and downregulation 
of extracellular matrix remodeling genes in HER2‑positive 
DCIS
We next compared gene expression between cancer cell 
segments from DCIS and invasive areas from the mixed 
tumors (Fig.  1b, Suppl. Table  1), followed by GSEA 
using the Hallmark signatures (Fig. 1c, Suppl. Table 1). 
In invasive segments, the top enriched gene set was 
related to epithelial-to-mesenchymal transition (EMT). 
The genes that contributed the most to this enrichment 
were not canonical EMT genes, but rather genes encod-
ing components of the extracellular matrix (ECM), such 
as collagens, VCAN, and FN1, and genes involved in 
ECM degradation such as MMP11, ADAM12, and FAP. 
Importantly, these genes were expressed at lower lev-
els in both  DCISinv and  DCISpure compared to invasive 
cancer cell segments (Suppl. Figure  5). Two metabolic 
signatures Glycolysis and Oxidative Phosphorylation 
were enriched in  DCISinv cancer cell segments com-
pared with invasive cancer cell segments, indicating 
higher metabolic activity in DCIS (Fig.  1c). Network 
analyses revealed little overlap between genes driv-
ing the enrichment of these two signatures, indicating 
that both processes were indeed more active in DCIS 
cells than in invasive cancer cells (Fig. 1d). Hierarchical 
clustering of the significantly differentially expressed 
genes (FDR < 0.1, n = 51) across all cancer cell seg-
ments revealed that most  DCISpure segments clustered 
together with  DCISinv, highlighting similarities between 
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DCIS cancer cells from pure and mixed tumors that 
were not captured by the initial hierarchical clustering 
(Fig. 1e).

Different immune cell abundances, distributions 
and compositions in DCIS and IDC
The immune cell abundance varied substantially 
between the patients. DCIS lesions in pure and mixed 
tumors were commonly surrounded by numerous 
immune cells, often organized as distinct aggregates, 
particularly in close proximity to DCIS ducts. In areas 
with invasive tumor growth, immune cells typically 
accumulated along the edges of the tumor, while they 

were sparse in the center of the tumor and, if present, 
frequently located along connective tissue fibers 
(Fig.  2a). In silico cell deconvolution of the stromal 
segments revealed greater estimated immune cell 
abundances in DCIS than in invasive tumors (Suppl. 
Figure  6A). Furthermore, the estimated immune cell 
composition also differed considerably between DCIS 
and invasive stromal segments (Fig.  2b). Interestingly, 
the immune profile of stromal segments from  DCISinv 
resembled  DCISpure rather than corresponding invasive 
segments from the same mixed invasive tumor, 
confirming the results from the initial hierarchical 
clustering (Fig. 1a). Compared with invasive segments, 

Fig. 1 Genes and signatures distinguishing DCIS and invasive cancer cell segments. a Hierarchical clustering dendrogram illustrating the relationship 
between cancer cell segments (top) and stromal segments (bottom). Sample ID and tissue type is indicated by color. b Differentially expressed genes 
between DCISinv and invasive cancer cell segments using mixed effect models. The model’s estimate (effect size) is shown on the x-axis and -log10(FDR) 
is shown on the y-axis. Genes significantly upregulated in invasive segments (FDR < 0.1) are shown in red and genes significantly upregulated 
in  DCISinv segments are shown in purple. c Hallmark gene sets enriched between invasive cancer cell segments and  DCISinv. Normalized Enrichment 
Scores are shown for the top five signatures higher expressed in invasive segments (NES > 0) and the top five signatures higher expressed in  DCISinv 
(NES < 0). Colored bars indicate significant signatures (FDR < 0.1). d Network of leading-edge genes enriched in  DCISinv cancer cell segments. Leading 
edge genes from glycolysis and oxidative phosphorylation signatures upregulated in DCIS compared to IDC. Node size is correlated to the inverse 
of the p value from DGE, and gray shading according to the estimate from the mixed effect models. e Significantly differentially expressed 
genes between DCISinv and invasive cancer cell segments (FDR < 0.1). The heatmap represents gene expression values centered across segments 
and hierarchically clustered across genes and segments (distance method: euclidean, clustering method: complete). Top annotation indicates 
sample ID and tissue type
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DCIS from pure and mixed invasive tumors presented 
a greater estimated abundance of B cells, in addition 
to more T regulatory and  CD4+ T cells (the latter 
marginally non-significant), whereas stromal segments 
from invasive areas presented a greater abundance 
of macrophages (Fig.  2c).  CD8+ T cells were not 
significantly differently abundant between the tissue 
types. The expression of the B cell marker genes CD19, 
CD79A and MS4A1 (CD20) highly correlated with the 
estimated B cell abundance (Suppl. Figure  6B). IHC 
with an anti-CD19 antibody confirmed the different 
abundances of B cells between DCIS and mixed 
invasive tumors (Suppl. Figure 6C).

Immune cell composition validated using single‑cell 
spatial proteomics
To map the spatial distribution of single immune cells 
and to validate the immune cell deconvolution analysis, 
we performed single-cell spatial proteomic data analysis 
and immune cell phenotyping on two of the cases, one 
mixed invasive tumor (ID-08) and one pure DCIS (ID-
09). In total 45 ROIs were analyzed obtaining single-cell 
data from 57,069 cells. The immune cells in the pure 
DCIS sample were predominantly B cells and  CD4+ T 
cells, with few  CD8+ T cells and macrophages (Suppl. 

Figure  6D). In contrast, mixed invasive tumors were 
dominated by  CD8+ T cells, with a markedly lower 
abundance of B cells than pure DCIS tumors (Fig.  3a, 
Suppl. Figure  6D). Macrophages were heterogeneously 
distributed and most abundant in areas with invasive 
tumor growth. In both cases, B cells were commonly 
located in proximity to DCIS foci, and in the pure DCIS 
case, B cells were frequently present in distinct lymphoid 
aggregates. In addition to numerous B cells, these 
aggregates commonly included  CD4+ T cells, dendritic 
cells and endothelial cells, a cell composition commonly 
observed in tertiary lymphoid structures (TLSs). Few 
T regulatory cells were observed, which contrasts the 
results from the immune cell deconvolution estimations. 
Apart from this, the single-cell spatial proteomic analyses 
of the two cases confirmed the results from the in silico 
deconvolution.

B cell abundance in DCIS is associated with stromal 
expression of chemokines and high metabolic activity 
in cancer cells
Accumulation of B cells around DCIS foci suggests a 
localized signaling mechanism that recruits specific 
immune cells. Using gene expression data from the stro-
mal segments, we examined the relationship between 

Fig. 2 Immune cell profiling. a Immune cell distribution in pure DCIS and mixed invasive tumors. Immunofluorescence images of a pure DCIS (top 
left) and an area with DCIS from a mixed invasive tumor (top right). Shown below is an invasive area from a mixed invasive tumor and magnified 
images of an area from the periphery (i) and a central area (ii). PanCK (green), SMA (yellow), CD45 (magenta), Syto83 (DNA, blue). b In silico immune 
cell deconvolution of stromal segments. Each bar represents one stromal segment. The height of the colored bars represents the relative estimated 
abundance of the different immune cells. c Abundance of immune cell types. The percentage of estimated abundance of five selected immune cell 
types are shown on the y-axis and tissue type is shown on the x-axis. Boxplots illustrate the median (middle line) and the third and first quartiles 
(box); whiskers indicate 1.5 × IQR above and below the box. P values are from Kruskal Wallis tests
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chemokine expression and B cell abundance as estimated 
by immune cell deconvolution. This revealed a positive 
correlation between B cell abundance and the expression 
of several B-cell-attracting chemokines in stromal seg-
ments surrounding DCIS, notably CCL19, CCL21, and 
CXCL13 (Fig. 3b and Suppl. Table 2). These chemokines 
were highly expressed in the stromal regions of both 
DCIS types and lower expressed in invasive stromal seg-
ments (Suppl. Figure 6E). Conversely, CXCL16 exhibited 
a negative correlation with B cell abundance and was 
expressed at low levels in DCIS, and higher in invasive 
stroma (Fig. 3b, Suppl. Figure 6E).

To explore which molecular pathways in DCIS cancer 
cells are associated with B cell abundance, we correlated 
gene expression values from cancer cell segments with 
the estimated B cell abundance in corresponding stro-
mal segments, followed by GSEA (Fig. 3c, Suppl. Table 3). 

This analysis showed that WNT/β-catenin signaling and 
G2M checkpoint signatures in DCIS cancer cells were 
negatively associated with B cell abundance. In contrast, 
DCIS cancer cell segments surrounded by high number 
of B cells showed enrichment for signatures related to 
MTORC1 signaling, oxidative phosphorylation, and gly-
colysis. This suggests a link between elevated metabolic 
activity in DCIS cancer cells and increased B cell pres-
ence. These findings align with our previous differential 
gene expression analyses comparing DCIS and invasive 
cancer cell segments (Fig. 1c), with substantial overlap in 
the leading-edge genes from both these analyses (Suppl. 
Figure 6F and Fig. 1d). Notably, isocitrate dehydrogenase 
1 (IDH1), the top hit, showed a significant positive corre-
lation with B-cell abundance in DCIS (Suppl. Figure 6G) 
and higher expression in DCIS compared to invasive 
tumors (Suppl. Figure 6H).

Fig. 3 Single-cell analyses and immune cell signaling. a Single-cell proteomic analyses of one pure DCIS and one mixed invasive tumor. Two selected 
ROIs from each sample are shown. Left panels: ID-09 (pure DCIS), right panels: ID-08 (mixed invasive tumor). Top: Composite immunofluorescence 
images of selected markers. EpCam (green), SMA (gray), CD19 (cyan), CD8 (red), CD4 (magenta), CD68 (yellow), DAPI (DNA, blue). Bottom: Maps 
of cell types estimated by CELESTA cell phenotyping indicated by colors for the different cell types. b Correlation between chemokine gene expression 
and B cell abundance in stromal segments surrounding DCIS. B-cell abundance estimated using immune cell deconvolution is shown on the x-axis 
and chemokine expression in stromal segments on a  log2 scale is shown on the y-axis. Pearson correlation coefficients and corresponding P values 
are given. c Gene Set Enrichment of genes expressed in DCIS cancer segments correlating with B cell abundance in corresponding stromal segments. 
Normalized Enrichment Score is shown for the top five signatures positively correlated with B cell abundance (NES > 0) and the top five signatures 
negatively correlated with B cell abundance (NES < 0). Colored bars indicate significant signatures (FDR < 0.1)
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Bulk tissue analyses confirmed different B cell abundances 
in DCIS and invasive tumors
To validate the findings from the spatial transcriptomic 
analyses in a larger dataset and to compare the profiles 
of HER2-positive tumors with those of HER2-negative 
tumors, we explored a previously published gene 
expression dataset derived from bulk tissue samples, 
including DCIS and invasive tumors, across all subtypes 
[16]. We divided the cohort into HER2-high (n = 53) 
and HER2-low (n = 317) based on ERBB2 expression. 
As expected, the proportion of HER2-high tumors was 
significantly greater (X2 (df = 1) = 25,71, p < 0.001) among 
DCIS patients than among invasive patients (Fig.  4a). 

We performed DGE analyses to compare HER2-high 
DCIS and HER2-high invasive tumors, followed by 
GSEA (Suppl. Table 4). HER2-high invasive tumors were 
characterized by upregulation of signatures involving 
interferon response, EMT and cell cycle, whereas HER2-
high DCIS tumors exhibited upregulation of numerous 
molecular pathways, including several involved in cell 
metabolism (Suppl. Figure  7A, Suppl. Table  4). Next, 
we performed DGE analysis between HER2-low DCIS 
and IDC, followed by a comparison of the significantly 
differentially expressed genes from the two DGE analyses 
(Fig.  4b). HER2-high DCIS showed upregulation of 
several immune markers and chemokines, including 
many of those identified in the spatial transcriptomic 
analyses, such as CCL19, CCL21, CD19 and MSF4A1, 
whereas HER2-high IDC showed higher expression 
of several interferon-induced genes (Fig.  4b, Suppl. 
Table  4). Similar to the spatial data, IDH1 expression 
was significantly greater in DCIS tumors than in invasive 
tumors in both the HER2-high and HER2-low groups 
(Suppl. Figure 7B).

To explore the immune cell composition of DCIS and 
invasive tumors in both the HER2-high and HER2-low 
groups, we performed in silico immune cell deconvolu-
tion (Fig. 4c and Suppl. Figure 7C). We detected a lower 
abundance of macrophages and a greater abundance of B 
cells and CD4 + T cells in HER2-high DCIS tumors than 
in HER2-high invasive tumors, which is in good accord-
ance with the results from the spatial transcriptomic 
analyses. The estimated abundance of B cells correlated 
strongly with the expression of the B cell markers CD19, 
MS4A1 (CD20) and CD79a (Suppl. Figure 7D).

The expression of the chemokines CCL19, CCL21 and 
CXCL13 correlated significantly with B cell abundance 

Fig. 4 Gene expression and cell type abundance in an independent 
cohort. a Distribution of HER2-high breast tumors (n = 53) vs HER2-low 
(n = 317) in DCIS and IDC. HER2-high samples were defined as having 
 log2(HER2-expression) > 11. The pink area indicates proportion 
of HER2-high tumors, and the gray area indicates HER2-low. Chi 
square test indicated significantly different distribution of HER2-high 
tumors between DCIS and IDC (X2 (df = 1) = 25,71, p < 0.001). 
b Comparison of differentially expressed genes in HER2-high and 
HER2-low groups. Numbers indicate significantly differentially 
expressed genes in each group (FDR < 0.05). Selected genes are 
shown in corresponding boxes. c Immune cell deconvolution in 
HER2-high DCIS and invasive tumors. Each bar represents one sample, 
and the height of the colored bars represent the relative estimated 
abundance of different immune cells. d Top enriched Hallmark gene 
sets correlated with B-cell abundance in HER2-high DCIS. Normalized 
Enrichment Scores for the top five signatures positively correlated 
with B-cell abundance (NES > 0) and the top five signatures 
negatively correlated with B-cell abundance (NES < 0) in HER2-high 
DCIS. Colored bars indicate significant signatures (FDR < 0.1)

◂



Page 9 of 12Bergholtz et al. Breast Cancer Research           (2025) 27:44  

in the HER2-high group in the validation dataset (Suppl. 
Figure  7E) and was greater in HER2-high DCIS than in 
HER2-high invasive tumors and all HER2-low tumors 
(Suppl. Figure 7F). CXCL16 did not correlate with B-cells 
and showed no difference in expression between any of 
the groups. Furthermore, we correlated the estimated B 
cell abundance with gene expression followed by GSEA 
in HER2-high DCIS. As expected, multiple immune-
related pathways were positively correlated with B cell 
abundance, whereas EMT was negatively correlated with 
B-cell abundance (Fig.  4d, Suppl. Table  5). We did not 
find enrichment of metabolic pathways, possibly due to 
contributions from noncancerous cells in the bulk tumor 
tissue masking more subtle differences.

Discussion
In bulk tissue analyses, stromal and immune cells will, 
to a variable degree, influence gene expression data 
obtained from a tumor. This complicates interpreta-
tion of the relationship between cell types, their spatial 
location, and gene expression. To resolve this challenge, 
spatial-omics technologies have emerged as invaluable 
tools for studying smaller areas of cell populations sepa-
rately [33]. Spatial-omics is particularly useful for study-
ing DCIS because of its unique morphology, with cancer 
cells located inside mammary gland ducts. In this study, 
we explored gene expression profiles in HER2-positive 
pure DCIS and mixed invasive breast carcinomas in a 
spatial context with the aim of identifying clues to how 
HER2-positive DCIS progresses to invasive disease.

Overall, we found high resemblance between cancer 
cell segments obtained within the same tumor specimen 
and between DCIS foci and invasive cancer cell segments 
within mixed invasive tumors. This intrinsic resemblance 
is in accordance with previous literature reporting few 
consistent molecular differences between DCIS and 
invasive areas in mixed tumors [51–53]. In the stroma, 
there was high concordance of overall gene expression 
and estimated immune cell composition within the same 
patient; however, DCIS-associated stromal segments 
from mixed invasive tumors were remarkably similar to 
those obtained from pure DCIS.

Our results revealed a greater abundance of B cells 
in HER2-positive DCIS than in HER2-positive inva-
sive tumors and HER2-negative DCIS and invasive 
tumors, validating previous findings [23, 24]. In addi-
tion, we detected increased B-cell abundance in DCIS 
areas within invasive tumors. Tumor-infiltrating B cells 
(TIL-Bs) have been shown to be a marker for favorable 
prognosis in several tumor types [54, 55]; however, B 
cells can also play a pro-tumorigenic role [56]. In DCIS, 
B cells may either act anti-tumorigenic by incapacitating 
invading cancer cells through a local humoral response 

and activation of cytotoxic T cells, or pro-tumorigenic 
by contributing to a permissive microenvironment for 
invasion. High TIL-Bs are prognostic of better outcomes 
in patients with HER2-positive IDC [57]. In DCIS, TIL-
Bs have not been studied extensively; however, in one 
study by Miligy and colleagues, TIL-Bs were shown to 
be a marker for shorter recurrence-free survival [24]. 
The authors reported a significant association between 
TIL-Bs and HER2 status but did not study the role of B 
cells specifically in HER2-positive DCIS. Our study lacks 
information on recurrence; however, the observed higher 
B cell abundance in pure DCIS compared with IDC may 
indicate, in contrast to what was found in the study by 
Miligy et  al., that B cells in HER2-positive DCIS play a 
protective role. In a study by Risom and colleagues, 
non-progressing DCIS were characterized by increased 
abundance of immune cells and increased desmoplasia 
combined with, and potentially as a response to, thin-
ning of the myoepithelium [10]. We did not characterize 
the myoepithelium specifically in our study, however, the 
large immune cell influx seen in the DCIS cases indicates 
communication between intraductal cancer cells and the 
extraductal microenvironment.

In DCIS cases, B cells were commonly located in 
immune cell aggregates. In the pure DCIS case analyzed 
by single-cell proteomics, we observed that B cells in such 
aggregates colocalized with CD4 + T cells. These aggre-
gates potentially represent tertiary lymphoid structures 
(TLSs), which are ectopic lymphoid organs that can form 
at sites of persistent inflammation [23–25]. Mature TLSs 
are considered important players in anti-tumorigenic 
immune responses, and their formation is stimulated by 
the chemokine CXCL13 [56]. CXCL13 was indeed more 
highly expressed in the stromal compartment of DCIS, 
as assessed by the spatial transcriptomics analysis, and 
in the HER2-high group in the bulk gene expression vali-
dation dataset. The stromal expression of CXCL13 was 
highly correlated with B cell abundance. Moreover, the 
chemokines CCL19 and CCL21 were highly correlated 
with B cell abundance. These are known to play a role in 
the recruitment of immune cells to tissues [58]. Outside 
of lymph nodes, CCL19 and CXCL13 are commonly pro-
duced by dendritic cells and macrophages while CCL21 
is produced by cells in the high-endothelial venules [58]. 
In the bulk validation data, we found higher expression 
of CCL19, CCL21 and CXCL13 in the HER2-high DCIS 
compared to HER2-high invasive tumors and compared 
to both HER2-low groups. These findings indicate a 
unique immune response in HER2-positive DCIS, poten-
tially holding clues to the overrepresentation of HER2-
positive DCIS.

HER2 overexpression in  invasive breast cancer has 
been linked to increased metabolic activity, including 
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upregulation of the mTOR pathway and increased 
glycolysis [59]. In DCIS,  the role of metabolic activity 
is not established. Risom et  al. showed that glycolysis 
was associated with non-progressing DCIS [10], while 
in a study by Strand et  al., glycolysis and oxidative 
phosphorylation was associated with progression 
[60]. In our study, cancer cell segments from DCIS 
patients presented high expression of genes involved 
in energy metabolism compared to invasive cancer cell 
segments, and glycolysis and oxidative phosphorylation 
pathways were upregulated in DCIS. Interestingly, 
both these metabolic processes correlated with B cell 
abundance in DCIS. Increased metabolic activity in 
DCIS cancer cells may occur as a result of the highly 
restrictive and hypoxic DCIS environment [13]. One 
can speculate that this increased metabolic activity of 
DCIS cancer cells may influence the influx of immune 
cells (including B cells) towards the ducts. One 
potential mechanism involves intermediate metabolites 
such as α-ketoglutarate. α-ketoglutarate is produced in 
the TCA cycle from isocitrate by IDH1 and has been 
shown to stimulate anti-tumor immunity [61]. IDH1 
was indeed more highly expressed in DCIS than in IDC 
in our study and has also previously been shown to 
decrease with the progression of breast cancer [62].

WNT/β-catenin and cell cycle (G2M) signatures, which 
are associated with tumor aggressiveness, were negatively 
correlated with B cell abundance. EMT-related signatures 
were enriched in invasive tumors compared to DCIS in 
both spatial and bulk data, while negatively correlated to 
B cell abundance in DCIS, indicating that DCIS with a 
mesenchymal phenotype, attract less B cells. Hence, it is 
tempting to speculate that HER2-positive DCIS with few 
associated B cells and high expression of ECM-modulat-
ing proteins are more likely to progress than DCIS with 
the opposite phenotype. These findings again support a 
protective role of B cells in HER2-positive DCIS, as has 
also been hypothesized by others [26].

Spatial transcriptomics optimized for FFPE tumor 
tissue is a powerful tool for delineating cellular 
function and pathological changes and enables the use 
of routine pathology samples, utilizing very little tissue. 
Our study included a small number of cases; however, 
the study was limited to HER2-positive tumors, thus 
reducing the intertumoral heterogeneity that enables 
sufficiently reliable comparisons between groups. 
Follow-up data were not available for the patients 
in our study. A further limitation is the underlying 
different growth patterns of DCIS and invasive cancer 
cells, which instigates a segment selection strategy that 
could result in differences in the influence of stroma 
on the gene expression of the two types of cancer cell 

segments. However, this issue was reduced in our study 
by setting an appropriate erosion measure between 
the different segment types prior to probe collection. 
Finally, by using PanCK as a segmentation marker, we 
risk detecting signals in stroma from cancer cells with 
low or no cytokeratin expression. We have attempted 
to reduce the impact of such contamination in the 
immune cell deconvolution analysis by including tumor 
cell signatures.

Our study illustrates the usefulness of spatial omics, 
particularly for DCIS, because of its unique morphol-
ogy and high degree of heterogeneity. Using these 
techniques, we found indications of a protective B cell 
immune response that may provide clues for under-
standing the biology of HER2-positive DCIS tumor 
progression.
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