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Abstract
Background  Normal breast tissues adjacent to cancer often harbor many of the same genomic alterations as the 
cancer itself. However, it remains unclear whether histologically normal breast tissues carry genomic changes related 
to cancer development years before a cancer diagnosis.

Methods  Whole exome sequencing was performed to examine germline and somatic alterations in histologically 
normal breast tissues from women who subsequently developed breast cancer (n = 79, pre-diagnosis tissues) and 
compared these with results from breast tissues of women who did not (n = 81). No patient had germline mutations 
in cancer predisposition genes.

Results  The pre-diagnosis tissues had significantly more high functional impact germline variants per sample 
than the healthy controls (P = 0.034), 36.5% of affected genes were cancer hallmark genes, among these 62.4% 
were involved with evading growth suppressors and 5.7% with genome instability. The average number of somatic 
mutations were similar between the two cohorts. Mutation signature analysis revealed COSMIC signatures 3 
(associated with impaired homologous recombination) as a dominant signature more frequent in pre-diagnosis 
tissues. At gene and variant level, nine common germline polymorphisms in two immune regulatory genes, FCGBP 
and TPSBP2, and along with three somatic mutations in F13A1, FRY and TMLHE, were significantly more frequently 
mutated in the pre-diagnosis samples.

Conclusions  Individuals who develop breast cancer have a higher germline variant burden in normal breast tissues 
leading to subtle deficiencies in DNA repair that in the context of other germline and somatic mutations could 
facilitate malignant transformation.
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Background
The lifetime probability of being diagnosed with some 
type of invasive cancer is around 40% for women in the 
USA, and the most commonly diagnosed malignancy 
is breast cancer with over 300,000 new cases each year 
corresponding to a one in eight life time risk [1]. Breast 
cancer also accounts for one in four cancers in women 
worldwide with the highest incidence in North Amer-
ica and Europe, and the lowest in South-Central Asia 
and Africa [2]. Over 90% of breast cancers develop in 
women with no detectable germline mutation in any 
high penetrance cancer predisposing genes. However, 
family history of breast cancer in first degree relatives is 
a significant risk factor even in the absence of high pen-
etrance germline mutations but genome wide associa-
tion studies (GWAS) indicate a highly polygenic mode of 
inheritance. Large GWAS studies identified hundreds 
of common variants individually associated with small 
increased (or decreased) risk of breast cancer, with odds 
ratios (OR) between 0.85 to 1.20 [3], but even when these 
variants are combined into polygenic risk scores (PRS), 
they only explain a fraction of heredity. Including fam-
ily history in PRS-based risk prediction models improves 
prediction accuracy indicating that yet unknown genetic 
factors contribute to familial risk [3, 4]. The single most 
important risk factor for breast cancer is age, with risk 
increasing substantially after age 45 [5]. This is attributed 
to age-related accumulation of somatic mutations and 
epigenetic changes, but the rate of accumulation is influ-
enced by both inherited and environmental factors [6, 7].

Malignant transformation requires alterations in many 
cellular metabolic and regulatory processes that are col-
lectively described as the hallmarks of cancer [8]. Con-
sistent with gradual accumulation of somatic mutations 
in cancer relevant genes in normal tissues over lifetime, 
several studies detected cancer associated molecular 
changes in cancer-adjacent normal tissues [9–12]. These 
results suggest that histologically normal tissues can 
already harbor some of the hallmarks of cancer but have 
not yet reached a “tipping point” for malignant transfor-
mation. The high life-time risk of breast cancer indicates 
that this stepwise transformation process frequently 
reaches the critical level for full malignant transforma-
tion in breast epithelial cells in women.

The goal of our study was to examine genomic altera-
tions in histologically normal breast tissues of women 
who several years later developed invasive or non-inva-
sive breast cancer and compare the genomic architecture 
of these tissues with normal breast tissues from women 
who have not developed breast cancer. We obtained 
the tissues from The Susan G. Komen for the Cure Tis-
sue Bank at the Indiana University Simon Cancer Center 
[13], and used whole exome sequencing (WES) to asses 
DNA sequence alterations. Our analysis focused on 

germline and somatic variants with high predicted func-
tional impact (HFI) on protein function and on mutation 
signatures that could inform about the etiology of the 
mutagenic process.

Methods
Breast tissue samples
Breast core needle biopsy tissues from 160 healthy 
women at the Susan G. Komen Tissue Bank (​h​t​t​p​​s​:​/​​/​k​o​m​​
e​n​​t​i​s​​s​u​e​​b​a​n​k​​.​i​​u​.​e​d​u​/) [13] were requested for this study, 
with informed consent already obtained. The biopsies 
were collected as part of the Susan G. Komen annual 
drive when healthy women volunteer to undergo biop-
sies to donate healthy breast tissue. The biopsies con-
tained normal breast epithelial cells without morphologic 
abnormalities and associated fat and stroma. The samples 
were selected to include 79 participants who during the 
annual follow-up with Susan G. Komen self-reported a 
subsequent diagnosis of invasive or non-invasive breast 
cancer that occurred after tissue submission; these cases 
were classified as pre-diagnosis normal tissues. The other 
81 samples included tissues from women who had no 
cancer diagnosis at the last follow-up, and were classi-
fied as healthy control samples. Pre-diagnosis cases and 
healthy controls were matched by age, body mass index 
(BMI), Tyrer-Cuzick lifetime risk score, ethnicity, meno-
pausal status, and family history of cancer. None of the 
participants harbored known germline mutations that 
predispose to cancer. No Health Insurance Portabil-
ity and Accountability Act of 1996 (HIPAA) protected 
information was provided with any of the samples, and 
therefore this tissue analysis study was exempt from 
Institutional Review Board (IRB) approval.

DNA extraction and library Preparation
DNA was extracted using the Chemagic DNA Tissue 
100  mg Kit H24 (Revvity, cat no.: CMG-1207). The tis-
sue was lysed in the Lysis buffer/Proteinase K mix at 
56 degC. The lysate was prepared and extracted on the 
Chemagic 360 Instrument (Revvity) according to manu-
facturer’s protocol. Fragmentation of DNA was accom-
plished via sonication (Covaris). Fragmented DNA was 
quality checked using the 4200 TapeStation (Agilent) and 
High Sensitivity D1000 reagents (Agilent, cat. #5067–
5584, 5067–5585). Whole exome libraries were prepared 
using KAPA HyperPrep kits (Roche, cat. #07962363001) 
with an input of 1000ng DNA. Libraries were quan-
tified using Quant-IT dsDNA Broad Range assay kit 
(Thermo Fisher, cat. #Q33130) and multiplexed in pools 
of 8. Library pools were hybridized and captured using 
IDT xGen Exome Hyb Panel v2 (IDT, cat. #10005153) 
and IDT xGen Hybridization and Wash kit (IDT, cat. 
#1080584). Final libraries were quantified via qPCR on 
the LightCycler 480 II (Roche Diagnostics) using the 

https://komentissuebank.iu.edu/
https://komentissuebank.iu.edu/
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KAPA Library Quantification Kit (Roche Diagnostics, 
cat. #07960298001).

Whole exome sequencing and data processing
Sample concentrations were normalized to 2nM and 
loaded onto Illumina NovaSeq X Plus flow cell at a con-
centration that yields at least 600Gbp data per lane. The 
loading concentration for WES libraries was optimized to 
maximize both well occupancy and unique read output 
while limiting duplicates associated with patterned flow 
cell technology. Samples were sequenced at a target cov-
erage of 150x using 101 bp paired-end sequencing reads 
according to Illumina protocols. The 10 bp indexes were 
read during additional sequencing reads that automati-
cally followed the completion of read 1. A positive con-
trol (bacteriophage Phi X library) provided by Illumina 
was spiked into every lane at a concentration of 1% to 
monitor sequencing quality in real time. Signal intensities 
were converted to individual base calls during a run using 
the system’s Real Time Analysis (RTA) software. Sample 
de-multiplexing and alignment to the human genome - 
were performed using Illumina’s CASAVA 1.8.2 software 
suite. The error rate for all sample data was less than 2%.

A flow diagram illustrating somatic and germline vari-
ant calling pipeline is shown in Additional file 2: Fig. S1. 
The raw sequencing reads in FASTQ format were pro-
cessed using Trim Galore (version 0.6.10) with default 
settings for quality and adapter trimming [14]. The 
cleaned reads were then aligned to the human reference 
genome GRCh38 (hg38) using the Burrows–Wheeler 
aligner (BWA, version 0.7.17-r1188) [15]. Subsequently, 
we followed the workflows of the Genome Analysis Tool-
kit (GATK, version 4.4.0.0) to detect both somatic and 
germline variants [16]. Duplicated reads were marked 
and removed using the GATK’s Picard tool. Base qual-
ity score recalibration was performed using the GATK’s 
BaseRecalibrator and ApplyBQSR tools. Since we had no 
matching germline DNA from blood, for somatic variant 
calling we used the GATK’s Mutect2 tool in tumor-only 
mode. This mode uses a pre-assembled Panel of Normals 
(PON), constructed from hundreds to thousands of nor-
mal samples, to exclude germline variants [17]. Addition-
ally, the resource gnomAD, which contains population 
allele frequencies of both common and rare variants, was 
used to further exclude germline variants. This process 
was followed by variant filtering with the GATK’s Filter-
MutectCalls tool to reduce false positives and enhance 
call accuracy. Previous studies have indicated that the 
GATK’s HaplotypeCaller tool can detect germline vari-
ants even in tumor-only sequencing [18, 19]. Therefore, 
we employed it for germline variant calling in normal 
breast tissues from pre-diagnosis cases and healthy con-
trols. Germline variants were defined as variants that vary 
against the reference as determined by HaplotypeCaller, 

with subsequent filtering by the GATK’s CNNScoreVari-
ants and FilterVariantTranches tools. CNNScoreVariants 
annotated the variants used a pre-trained convolutional 
neural network model, and FilterVariantTranches applied 
tranche filtering based on scores from CNNScoreVari-
ants and common variants in the resource files including 
HapMap, Mills and 1000G, to improve the accuracy and 
reliability of germline variant identification. We further 
required the somatic variants to have an Allelic Depth 
(AD) > 5 for the alternative allele and a variant allele fre-
quency (VAF) > 5%. For germline variants the AD had to 
be > 5 and VAF > 20%.

Ancestry inferred from genotypes
The ancestry of participants was inferred using the gen-
otype-based tool GrafPop (version 1.0) [20, 21]. We used 
the germline variants as input for GrafPop, and default 
parameters were employed. Genetic distances from each 
participant to reference populations were calculated, and 
then the ancestral proportions of participants (European, 
African, and East Asian) were estimated.

High functional impact variants
Variants were annotated with variant type, MetaSVM 
deleteriousness and ClinVar pathogenicity (version 2022-
12-31) using ANNOVAR (version 2020-06-08) [22]. A 
variant was classified high functional impact if it was 
classified as Deleterious by MetaSVM with a score above 
0, or if it was designated as Pathogenic/Likely Pathogenic 
in ClinVar, or if it resulted in frameshift, start loss, stop 
gain, or stop loss variants, or if the variant was already 
annotated as high-confidence loss-of-function in the 
gnomAD database (version 2.1.1, ​h​t​t​p​​s​:​/​​/​g​n​o​​m​a​​d​.​b​​r​o​a​​d​i​
n​s​​t​i​​t​u​t​e​.​o​r​g​/).

Variants were also assigned into cancer hallmark cat-
egories if the associated genes belonged to biological pro-
cesses that comprise the hallmarks of cancer ​(​​​h​t​t​p​s​:​/​/​c​a​n​
c​e​r​h​a​l​l​m​a​r​k​s​.​c​o​m​/​​​​​)​. Additionally, variants were classified 
into mutation significance tiers based on Catalogue of 
Somatic Mutations In Cancer (COSMIC, ​h​t​t​p​​s​:​/​​/​c​a​n​​c​e​​r​.​
s​​a​n​g​​e​r​.​a​​c​.​​u​k​/​c​o​s​m​i​c, version 101) Cancer Mutation Cen-
sus (Additional file 1: Table S1 and S2). Tier 1 mutations 
were strongly associated with cancer; tier 2 mutations 
were of medium significance for cancer relevance and 
potentially associated; tier 3 variants were of low signifi-
cance, with minimal impact on cancer. ‘Other’ included 
mutations with no predicted significance.

Mutational signature analysis
Different mutational processes generate unique combina-
tions of nucleotide alterations that can inform about the 
mutagenic processes. We performed somatic mutation 
signature analysis using the non-negative matrix factor-
ization (NMF) algorithm SignatureAnalyzer (version 

https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
https://cancerhallmarks.com/
https://cancerhallmarks.com/
https://cancer.sanger.ac.uk/cosmic
https://cancer.sanger.ac.uk/cosmic
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0.0.8) [23, 24]. The detected signatures were compared 
to the COSMIC signatures to determine cosine similarity 
to 30 canonical signatures. SignatureAnalyzer was used 
to infer activity level for each detected signature (i.e., 
the estimated number of mutations associated with each 
signature). The activity level quantifies the contribution 
weight of each mutational signature to all mutations in an 
individual sample.

Expression data of normal breast and invasive breast 
cancer
mRNA expression data of normal and cancerous breast 
tissues was acquired from The Cancer Genome Atlas 
(TCGA, ​h​t​t​p​​s​:​/​​/​p​o​r​​t​a​​l​.​g​​d​c​.​​c​a​n​c​​e​r​​.​g​o​v​/). The Transcripts 
per Million (TPM) raw read counts for 110 normal sam-
ples and 1,113 cancerous samples were downloaded and 
log2(TPM + 1) transformed for further analysis. We also 
downloaded two additional microarray expression data-
sets, E-GEOD-70951 and E-GEOD-76250, from Array-
Express (​h​t​t​p​​s​:​/​​/​w​w​w​​.​e​​b​i​.​​a​c​.​​u​k​/​a​​r​r​​a​y​e​x​p​r​e​s​s​/), which 
included 148 and 33 paired samples of breast cancer and 
normal breast tissues, respectively. The microarray data 
were quantile normalized and log2-transformed.

Core cell types associated with specific genes in tis-
sues were derived from the Human Protein Atlas (​h​t​t​p​​s​
:​/​​/​w​w​w​​.​p​​r​o​t​e​i​n​a​t​l​a​s​.​o​r​g​/) [25]. This classification ​i​d​e​n​t​
i​f​i​e​s genes that demonstrate enriched specificity across 

various cell types within a single or multiple tissues, or 
those predominantly expressed in a core cell type pres-
ent in numerous tissues. The single-cell RNA expression 
levels of the genes in breast tissues were sourced from the 
Breast Cancer Atlas of Single Cell portal (​h​t​t​p​​s​:​/​​/​s​i​n​​g​l​​e​c​e​​
l​l​.​​b​r​o​a​​d​i​​n​s​t​​i​t​u​​t​e​.​o​​r​g​​/​s​i​​n​g​l​​e​_​c​e​​l​l​​/​s​t​u​d​y​/​S​C​P​1​0​3​9) [26].

Statistical analysis
Two-sample t-test was conducted to analyze differences 
of participant characteristics in continuous variables, 
including age, BMI, Tyrer-Cuzick lifetime risk score and 
follow-up time, between groups. For categorical vari-
ables, such as ethnicity, menopausal status and family 
history of cancer, Fisher’s exact test was used to test for 
significance. Fisher’s exact test was performed to detect 
differentially mutated genes/variants. Genes with vari-
ants were considered mutated genes. Only genes/vari-
ants that were mutated in at least five samples were 
considered, to avoid bias from mutations in very few 
samples and to increase statistical effectiveness. P val-
ues were adjusted for false positive rate (FDR) using the 
Benjamini-Hochberg method. Genes or variants with 
FDR below 0.05 were considered significant. The popu-
lation allele frequencies of differentially mutated variants 
in females were obtained from the gnomAD database. 
Shapiro-Wilk test was conducted to assess the normality 
of the number of mutations and gene expression. Since 
the Shapiro-Wilk test resulted in a P value of 0.4843 for 
the total number of mutations, confirming their normal 
distribution, the number of mutations was compared 
using two-sample t-test. However, as the Shapiro-Wilk 
test P values were less than 0.05 for most of the genes, 
the mRNA expression of these genes was compared using 
the Wilcoxon rank sum test, and the microarray expres-
sion was compared using the Wilcoxon signed rank test. 
Statistical significance was defined as P < 0.05. All analy-
ses and visualizations were performed using R (version 
4.3.1).

Results
Study participant characteristics
The study participant characteristics of pre-diagnosis 
breast tissues (n = 79) and the tissues from women who 
have not developed breast cancer (i.e. healthy controls, 
n = 81) are presented in Table 1. The self-reported ethnic-
ity of participants matched closely the genotype-based 
ancestry (Additional file 2: Fig. S2). There were no sig-
nificant differences in age, race, length of follow-up since 
tissue donation, BMI, Tyrer-Cuzick lifetime risk score, 
menopausal status, and family history of cancer between 
the cohorts. Among the pre-diagnosis samples, the aver-
age time from tissue donation to breast cancer diagnosis 
was 4.7 years (range: 0–11), among the healthy controls 

Table 1  Study participant characteristics
Healthy 
controls 
(n = 81)

Pre-
diagnosis 
tissues 
(n = 79)

P 
value

Age, mean (range) 53.9 
(29–73)

53.6 (28–74) 0.837a

BMI, mean (SD) 30.4 (6.3) 30.6 (6.5) 0.904a

Tyrer-Cuzick lifetime risk score, 
mean (SD)

12.7 (6.7) 13.4 (9.7) 0.594a

Self-reported ethnicity, n (%)
Black 17 (21.0%) 17 (21.5%) 1b

White 62 (76.5%) 60 (75.9%)
Others 2 (2.5%) 2 (2.6%)
Menopausal status, n (%)
Pre-menopausal 23 (28.4%) 23 (28.8%) 0.476b

Post-menopausal 53 (65.4%) 47 (60.0%)
Others 5 (6.2%) 9 (11.2%)
Has blood relatives with cancer, n (%)
Yes 43 (53.1%) 44 (55.0%) 1b

No 34 (42.0%) 33 (42.5%)
NA (4.9%) NA (2.5%)

Time to diagnosis in years, mean 
(range)

NA 4.7 (0–11)

Follow-up time from donation year, 
mean (range)

6.1 (0–14) NA

aP values determined by two-sample t-test
bP values determined by Fisher’s exact test

https://portal.gdc.cancer.gov/
https://www.ebi.ac.uk/arrayexpress/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://singlecell.broadinstitute.org/single_cell/study/SCP1039
https://singlecell.broadinstitute.org/single_cell/study/SCP1039
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the average time from tissue donation to last follow up 
was 6.1 years (range: 0–14) (P = 0.028).

The mutational landscape of breast tissues
Overall, the pre-diagnosis tissues had significantly more 
HFI variants per sample than breast tissues from healthy 
controls. As detailed in the Materials and Methods, 
the sequencing coverage was consistent across the two 
cohorts, confirming that the observed differences are 
not due to sequencing artifacts. When variants were 
compared between the cohorts separately based on 
somatic versus germline origin, there were significantly 
higher number of germline variants in the pre-diagnosis 
samples compared to breast tissues from healthy con-
trols (P = 0.034). The average numbers of somatic muta-
tions per sample were similar between the two cohorts. 
This trend was observed across all quartiles of germline 
variant and mutation burden, with quartiles calculated 
independently for each cohort. (Fig. 1A). Additional file 
1: Table S1 and S2 list all genes effected by HFI germline 
variants and somatic mutations for each sample. These 
results suggest that individuals who develop breast cancer 
have a higher variant burden in normal breast tissues and 
most of these variants are of germline origin. Variants 

were distributed across all cancer hallmark genes with no 
variant enrichment (Additional file 1: Table S3).

At gene level, there was no statistically significant 
difference in the frequencies of genes harboring HFI 
germline variants in pre-diagnosis compared to healthy 
control samples despite the overall higher germline vari-
ant burden. 36.5% of genes affected by HFI germline vari-
ants were cancer hallmark genes, among these 62.4% 
were involved with evading growth suppressors and 5.7% 
with genome instability. When somatic mutations were 
examined, 38.6% of genes affected were cancer hallmark 
genes, among these 40.7% were involved with evading 
growth suppressors and 9.5% with genome instability. 
We also identified four genes that were significantly more 
frequently somatically mutated in pre-diagnosis tissues 
that eventually gave rise to cancer (Fig. 1B). These genes 
included Transglutaminase A Chain (F13A1) in 14% (ver-
sus 1% in controls), FRY Microtubule Binding Protein 
(FRY) affected in 14% (versus 0% in control), Trimethyl-
lysine Hydroxylase, Epsilon (TMLHE) in 11% (versus 0% 
in controls), and Voltage-gated Sodium Channel Type I 
alpha Subunit (SCN1A) in 10% (versus 0% in controls) 
(Additional file 2: Fig. S3). SCN1A harbored five different 
variants in different individuals, unlike the other genes 
that had recurrent variants. No gene was more frequently 

Fig. 1  Somatic mutation landscape in pre-diagnosis tissues versus healthy controls. A Comparison of the number of mutations per sample categorized 
by source (germline, somatic, or combined) between the two groups, across four quartiles. B Oncoplots of genes that are most frequently affected by 
somatic mutations in the two different cohorts. Percent numbers indicate the fraction of cases affected. Asterisks indicate genes with significantly differ-
ent mutation frequencies between the groups
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affected by somatic mutation in the healthy control tis-
sues compared to the pre-diagnosis cohort.

Figure 1B shows the top 10 most frequent somatically 
mutated genes in the two cohorts. We also observed 
many somatic nonsense mutations in the top 10 mutated 
genes in pre-diagnosis tissues. Nonsense mutations lead 
to truncated proteins often with high impact on function, 
we therefore compared the number of nonsense muta-
tions between the two cohorts. There was a trend toward 
more somatic nonsense mutations in pre-diagnosis tis-
sues, with an average of 4.5 (range: 0–11), compared 
to an average of 3.8 (range: 0–16) in healthy controls 
(P = 0.086). No difference was found in the number of 
germline nonsense mutations between the two groups 
(P = 0.275).

Mutation signature analysis of healthy control tis-
sues detected COSMIC signatures 5 and 6 with cosine 
similarities of 0.57 and 0.85, respectively (Fig. 2A and C). 
The etiology of signature 5 is unknown, but signature 6 
is attributed to defective DNA mismatch repair and is 
also found in microsatellite unstable tumors. In the pre-
diagnosis samples, COSMIC signatures 3 and 6 were 
detected, with cosine similarities of 0.32 and 0.84 (Fig. 2B 
and D). Signature 3 is associated with failure of DNA 
double-strand break-repair by homologous recombina-
tion. We also observed slightly more genome instability 
hallmark genes affected by HFI variants in pre-diagnosis 
tissues with higher activity levels of signatures 3. For sig-
nature 3, samples with activity above the median had an 
average of 0.4 germline variants and 0.7 somatic muta-
tions in genome instability genes whereas samples below 
the median had an average of 0.2 germline variants and 
0.6 somatic mutations. For signature 6, both high and low 
activity samples had an average of 0.3 germline variants 
and 0.7 somatic mutations in DNA repair genes. These 
findings suggest that germline variants in genes that 
regulate genome stability could affect mutation signature 
patterns in normal tissues, and subsequent cancer risk.

High functional impact variants more frequently mutated 
in pre-diagnosis breast tissues
When we compared HFI germline variant allele frequen-
cies, nine alleles were more frequently mutated in pre-
diagnosis cohort compared to healthy controls (OR > 1.0, 
FDR < 0.05, Fig. 3A). All of them were common polymor-
phisms and none were previously linked to breast cancer 
risk in genome-wide association studies [27–29]. Eight of 
these variants were frameshift mutations in exon 8 of the 
Fc-Gamma Binding Protein (FCGBP) gene (Fig. 4, Addi-
tional file 2: Fig. S4A). The most common variant was 
c.3587_3588del: p.R1196Lfs*15 detected in 85% of pre-
diagnosis tissues and 44% of healthy controls (OR = 6.89; 
FDR = 1e-05). The population allele frequencies of these 
eight variants in the gnomAD database confirmed high 

allele frequencies ranging from 0.764 to 0.971, with 
uniform frequencies across ancestry groups (Addi-
tional file 1: Table S4). The germline variant, c.452dupC: 
p.M153Dfs*14 in exon 4 of the Tryptase Beta-2 (TPSB2) 
gene, also showed significantly higher frequency in pre-
diagnosis tissues compared to healthy controls (22% vs. 
4%; OR = 7.05; FDR = 0.021) (Fig.  3A, Additional file 2: 
Fig. S4B). The population allele frequency of this variant 
is lower (0.211), but still in the range of common poly-
morphisms (i.e. > 0.01) among individuals with African 
and European ancestry, but much lower among East 
(0.00099) and South (0.084) Asian women (Additional 
file 1: Table S4).

When we compared somatic mutation allele frequen-
cies, we found three mutations that were significantly 
more frequent in pre-diagnosis tissues (Fig.  3B, Addi-
tional file 2: Fig. S4C-F). The c.G3T: p.M1? mutation in 
the F13A1 gene occurred in 14% versus 1% in pre-diagno-
sis and healthy control samples (OR = 12.79; FDR = 0.035). 
The c.G7951T: p.G2651X mutation in the FRY gene and 
the c.G1147T: p.D383Y mutation in the TMLHE gene 
were found in 14% (FDR = 0.014) and 11% (FDR = 0.033) 
of pre-diagnosis tissues, respectively, with no mutations 
seen in the healthy controls. SCN1A gene was found to 
be significantly more mutated in pre-diagnosis samples. 
However, none of the five mutations demonstrated a 
significant difference between the two cohorts (Fig. 3B). 
Germline population allele frequencies of these three 
somatic mutations in the F13A1, FRY, and TMLHE genes 
were very low, ranging from 0.000045 to 0.0016, and 
similar across ancestry groups. Interestingly, we found 
two somatic mutations, PIK3CA:c.G1624A: p.E542K and 
PIK3CA:c.A3140G: p.H1047R, which were of high signif-
icance according to COSMIC, and two others, AKT1:c.
G49A: p.E17K and NCOR1:c.334delG: p.E112Nfs*18, of 
low significance in pre-diagnosis tissues. In contrast, no 
somatic mutations of cancer significance were identified 
in healthy controls (Additional file 1: Table S2).

Expression levels of the FCGBP, TPSB2, F13A1, FRY, TMLHE, 
and SCN1A genes in breast tissues and in different cell 
types in the breast
We examined mRNA expression levels of the six genes 
that were more frequently affected by HFI germline 
variants or somatic mutations in breast tissues that sub-
sequently developed invasive or non-invasive cancer. 
In the TCGA, five of the six genes showed generally 
high mRNA expression levels in both normal and can-
cer tissues, except SCN1A that had very low expression 
(Fig.  5). The low/absent expression of SCN1A is consis-
tent with its restricted expression in neural and muscle 
tissues. The FCGBP, F13A1, FRY, and TMLHE genes 
had significantly higher expression in normal tissues 
than in cancer (P = 2.8e-07, P = 3.3e-14, P < 2.22e-16 and 
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Fig. 2  COSMIC mutation signatures identified in healthy control and pre-diagnosis breast tissues. A Mutational signature profiles representing 96 nucleo-
tide combinations in healthy controls. B Mutational signature profiles in pre-diagnosis tissues. C Counts and fractions of COSMIC signatures 5 and 6 in 
healthy control breast tissues. D Counts and fractions of COSMIC signatures 3 and 6 in pre-diagnosis tissues
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P < 2.22e-16, respectively). TPSB2 showed similar expres-
sion in normal and cancer tissues. Similar results for the 
FCGBP, F13A1, FRY, and TMLHE genes were observed 
in the two additional microarray expression datasets, 
E-GEOD-70,951 and E-GEOD-76,250 (Additional file 2: 
Fig. S5). TPSB2 was not found in any microarray data-
sets. Additionally, we compared the descending rank-
ings of the six genes relative to the entire transcriptome 
based on their mRNA expression levels in the TCGA 
(Additional file 1: Table S5). Among 19,938 human genes, 
FCGBP, TPSB2, F13A1, FRY, and TMLHE exhibited 
moderately high expression levels in the breast tissues. 
Compared to normal breast tissues, the expression levels 
of FCGBP, F13A1, FRY, and TMLHE were ranked lower 
in cancerous tissues (P = 2.3e-06, P = 8.1e-15, P < 2.2e-
16, and P = 4.0e-09 respectively). SCN1A showed very 
low expression compared to other genes, with a slightly 
higher ranking in cancerous tissues compared to normal 
breast tissues (P = 0.0012).

We also assessed what core cell types express these six 
genes in various tissues using data from the Human Pro-
tein Atlas (Additional file 2: Fig. S6) and single-cell RNA 
expression results from the Breast Cancer Atlas Single 
Cell portal (Additional file 2: Fig. S7). FCGBP is primarily 
expressed in macrophages in a range of tissues, includ-
ing adipose tissues, pancreas, skeletal muscle, and breast. 
In the single-cell data set, FCGBP was enriched in mac-
rophages, monocytes, cycling myeloid cells, and T cells. 

TPSB2 is also primarily expressed in macrophages and 
mast cells in adipose tissues. In single-cell analyses of 
breast tissues, TPSB2 exhibited broad expression across 
cell types. F13A1 is another macrophage associated 
gene that is expressed across several tissues, including 
breast. In single-cell data of breast tissues, it is expressed 
in cycling myeloid cells, macrophages, monocytes, and 
cancer-associated fibroblasts (CAFs). In contrast, the 
other three genes did not show enrichment in specific 
cell types across various tissue types. However, single-cell 
data from breast tissues indicated that FRY was predomi-
nantly expressed in cycling perivascular-like (PVL) cells 
and endothelial cells. The TMLHE gene showed similar 
expression levels across all cell types in the single-cell 
data. SCN1A showed no expression across breast tissue 
cells. These results suggest that subtle innate immunity 
differences mediated through germline polymorphisms 
in FCGBP and TPSB2 genes or acquired mutations in 
F13A1 could influence breast cancer risk.

Discussion
We examined germline polymorphisms and somatic 
mutations in histologically normal breast tissues of 
women who subsequently developed breast cancer and 
women who have during an average follow-up time of 6 
years. High functional impact germline polymorphisms 
and acquired somatic mutations were frequently detected 
in cancer-relevant genes in both cohorts, however the 

Fig. 3  Variant level differences between pre-diagnosis breast tissues and healthy controls. A Oncoplots for germline variant alleles for the FCGBP and 
TPSB2 genes in the two groups. B Oncoplots for somatic mutations in the four significantly differently affected genes in the two groups. Asterisks indicate 
variants with significantly different mutation frequencies between the groups
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pre-diagnosis tissues on average had significantly more 
HFI germline variants per sample. Several previous stud-
ies have demonstrated that normal breast tissues adjacent 
to cancer harbor many of the same genomic alterations 
that the cancer has [9–11]. We now show that high func-
tional impact protein altering somatic mutations in can-
cer hallmark genes can also be found in histologically 
normal breast tissues many years before diagnosis of 
cancer. Equally importantly many cancer hallmark genes 
are also affected by germline variants. In pre-diagnosis 
tissues, of all genes affected by HFI germline polymor-
phisms 36.5% were cancer hallmark genes, and of the 
genes altered by somatic mutations 38.6% were cancer 
hallmark genes. The higher number of germline variants 
in pre-diagnosis tissues compared to controls suggests 
that individuals who are born with many individually not 
cancer-risk conferring variants are more susceptible for 
breast cancer development than individuals with lower 
variant burden in these genes. We hypothesize that those 
with high germline variant burden may require fewer 
additional somatic alterations to reach the critical level 

of cellular process disturbance for malignant transforma-
tion. This hypothesis is supported by a previous observa-
tion that across all cancer types, higher germline variant 
burden in cancer-relevant genes correlates with earlier 
onset of cancer, whereas earlier onset cancers have lower 
somatic mutation burden [6]. The current study is too 
small, and has too narrow of an age range, to address if 
germline variant burden correlates with age of onset of 
breast cancer. Mutation signature analysis suggested 
a possible mechanism for the higher variant burden 
observed in the pre-diagnosis cohort, the two signatures, 
COSMIC 3 and 6, that we detected in these tissues are 
both related to DNA repair deficiency. However, as the 
number of somatic variants was similar between the two 
cohorts, the accumulation of somatic mutations due to 
subtle DNA repair deficiencies in pre-diagnosis tissues 
may require a long time to reach a statistically detect-
able level. These results suggest that subtle deficien-
cies in DNA repair may exist in normal breast tissues of 
women who develop breast cancer. Which genes or vari-
ants might cause this deficiency is difficult to elucidate 

Fig. 4  Germline variant alleles and Somatic variant in the FCGBP gene. A Germline variant allele frequencies. B Somatic variant allele frequencies. Asterisks 
indicate variants that are more frequently found in pre-diagnosis tissues compared to healthy controls
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because at gene level, different combinations of genes 
were affected by HFI germline variants in different indi-
viduals. The mutation signatures likely represent phe-
notypic convergence driven by different mechanism in 
different individuals.

We also noted higher frequencies of nine common 
germline polymorphisms in two immune regulatory 
genes, FCGBP and TPSB2 that are primarily expressed 
in macrophages. Eight of the variants were frame shift 
variants in the FCGBP gene and at least one of these vari-
ants were seen in almost all pre-diagnosis tissues com-
pared to less than half of the controls. We also observed 
the co-occurrence of more than one of these mutations 
in pre-diagnosis samples (Fisher’s exact test P = 1.953e-
14). Since these mutations are very consistent across 
samples, they might all come from the same underly-
ing genomic event, such as a complex chromosomal 
recombination event or a shared haplotype. The FCGBP 
gene encodes a high molecular weight glycoprotein that 
binds to the Fc portion of immunoglobulin-G and plays 

an important role in innate mucosal epithelial defense, 
but also influences tumor metastasis and tumor immu-
nity [30]. FCGBP expression is correlated with higher 
immune infiltration and better prognosis in various can-
cer types and its down regulation is associated with an 
immunosuppressive tumor microenvironment [31–33]. 
The TPSB2 gene encodes a serine protease that is the 
most abundant mediator stored in mast cell granules and 
plays a central role in activating innate immunity, inflam-
matory and allergic reactions [34]. Mast cell activity in 
breast cancer tissues have context dependent immune 
activating or immune suppressing effect, but in most 
studies mast cells are associated with poorer prognosis 
and grater chemotherapy resistance [35]. These findings 
raise the possibility that some subtle deficiency in innate 
and adaptive anti-tumor immune surveillance that fails 
to eradicate transforming cells in breast tissues could 
contribute to breast cancer development in some women.

Similar to the variable combination of HFI germline 
polymorphisms, we found that different combinations 

Fig. 5  mRNA expression levels of the six genes in normal and cancerous TCGA breast tissues. A FCGBP, B TPSB2, C F13A1, D FRY, E TMLHE, F SCN1A. P values 
were from Wilcoxon rank sum test
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of genes were affected by somatic mutations in different 
individuals. However, three highly expressed genes in 
breast tissues showed significantly higher rates of somatic 
mutations in pre-diagnosis tissues than in controls. The 
two most frequently mutated genes FRY and F13A1 were 
both mutated in 14% of pre-diagnosis cases and almost 
never in controls, and the TMLHE gene was mutated in 
11% of cases but not in any of the controls. FRY is micro-
tubule associated protein and plays a role in chromosome 
alignment and stabilizes microtubules during mitosis. A 
truncated versions in the form of EEF1DP3-FRY fusion 
gene was detected in about 7% of breast cancers [36], 
polymorphisms in FRY were also linked to mammary 
tumor susceptibility in F334 rats [37], and FRY condi-
tional knockout mice showed impaired mammary gland 
development during pregnancy and the forced expres-
sion of the gene suppressed breast cancer cell growth 
[38]. F13A1 is a component of coagulation factor XIII 
and functions as a transglutaminase that can also cross-
link many proteins involved in tumor growth, wound 
healing and apoptosis [39]. F13A1 expression increases 
proliferation, invasion and migration of oral squamous 
cell carcinoma cells in vitro [40]. Its role in breast can-
cer biology is unexplored although coagulation-related 
gene expression has been associated with prognosis and 
chemotherapy response [41]. The TMLHE gene encodes 
enzyme that catalyzes the initial rate limiting step in car-
nitine biosynthesis and is required for histone acetyla-
tion and efficient DNA repair [42]. It was also found to be 
critical for triple negative breast cancer cell growth [43]. 
These results suggests that although these genes are not 
classical oncogenes, their altered functions may enable 
cells to progress towards transformation. The highly vari-
able and individual combinations of somatic mutations 
and germline protein altering variants hint at many dis-
tinct paths through which genomic alterations could con-
verge towards malignant transformation.

Our study has important limitations, in the absence 
of matching peripheral blood DNA our classification of 
variants into germline versus somatic origin was based 
on whitelisting of known polymorphisms, but we recog-
nize that some of our predicted somatic variants could 
also represent germline variants. Three quarters of our 
study population were White and germline polymor-
phisms are less well catalogued in non-White populations 
in the USA. The median follow-up time for the control 
group was around 6 years and some of these individuals 
could develop breast cancer at later time points. Further-
more, we used expression datasets to estimate the impact 
of mutations in the six genes, which indicated reduced 
expression levels in tumors. However, future functional 
studies will be needed to confirm the biological impor-
tance of these alterations.

Conclusions
In summary, our findings add to the growing literature 
which indicates that histologically normal breast tissues 
harbor genomic alterations in various cancer hallmark 
pathways. Our data also suggest that a combination of 
subtle inter-individual differences in DNA repair fitness 
and germline polymorphisms that possibly affect innate 
immunity can “set the scene” for subsequent malignant 
transformation and breast cancer development. The 
absence of highly recurrent somatic or germline altera-
tions in the pre-diagnosis tissues also indicate that there 
are many different paths to malignant transformation 
enabled by disturbances in different genes at different 
nodes in the large network of biological pathways that 
regulate cell growth, invasion, cellular metabolism, and 
immune escape.

Abbreviations
GWAS	� Genome wide association studies
OR	� Odds ratios
PRS	� Polygenic risk scores
WES	� Whole exome sequencing
HFI	� High functional impact
BMI	� Body mass index
HIPAA	� Health Insurance Portability and Accountability Act of 1996
IRB	� Institutional Review Board
RTA	� Real Time Analysis
BWA	� Burrows–Wheeler aligner
GATK	� Genome Analysis Toolkit
PON	� Panel of Normals
AD	� Allelic Depth
VAF	� variant allele frequency
COSMIC	� Catalogue of Somatic Mutations In Cancer
NMF	� Non-negative matrix factorization
TCGA	� The Cancer Genome Atlas
TPM	� Transcripts per Million
FDR	� False discovery rate
CAFs	� Cancer-associated fibroblasts
PVL	� Perivascular-like

Supplementary Information
The online version contains supplementary material available at ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​
g​/​​1​0​.​​1​1​8​6​​/​s​​1​3​0​5​8​-​0​2​5​-​0​2​0​1​8​-​5.

Supplementary Material 1

Supplementary Material 2

Acknowledgements
Samples from the Susan G. Komen Tissue Bank at the IU Simon 
Comprehensive Cancer Center were used in this study. We thank contributors, 
including Indiana University, who collected samples used in this study, as well 
as donors and their families whose help and participation made this work 
possible.

Author contributions
J.D., M.R. and L.P. developed the concept for the manuscript. S.M. has 
supervised and generated molecular data, J.D., M.R. and X.L. analyzed the data 
with assistance from N.L.S., Y.W. and M.M. J.D. contributed to drafting of the 
manuscript. L.P. and M.M. contributed to critical revision of the manuscript. J.D. 
and M.R. contributed equally to this work. All authors reviewed and approved 
the final manuscript.

https://doi.org/10.1186/s13058-025-02018-5
https://doi.org/10.1186/s13058-025-02018-5


Page 12 of 13Dai et al. Breast Cancer Research           (2025) 27:60 

Funding
This study was supported by a Breast Cancer Research Foundation Investigator 
Award (BCRF-22-133) and a Susan Komen Leadership Grant (SAC220225) to 
L.P., as well as the National Science Centre, Poland (2023/50/E/NZ2/00583) to 
M.M.

Data availability
The dataset generated during the current study is available in the dbGap 
repository under accession number phs003822.v1.p1 (​h​t​t​p​​s​:​/​​/​w​w​w​​.​n​​c​b​i​​.​n​l​​m​.​n​
i​​h​.​​g​o​v​​/​p​r​​o​j​e​c​​t​s​​/​g​a​​p​/​c​​g​i​-​b​​i​n​​/​s​t​​u​d​y​​.​c​g​i​​?​s​​t​u​d​y​_​i​d​=​p​h​s​0​0​3​8​2​2​.​v​1​.​p​1).

Declarations

Ethics approval and consent to participate
The breast core needle biopsy tissues in this study were requested from the 
Susan G. Komen Tissue Bank (​h​t​t​p​​s​:​/​​/​k​o​m​​e​n​​t​i​s​​s​u​e​​b​a​n​k​​.​i​​u​.​e​d​u​/). Informed 
consent has already been obtained. No HIPAA protected information was 
provided with any of the samples, and therefore this tissue analysis study was 
exempt from IRB approval.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 19 February 2025 / Accepted: 7 April 2025

References
1.	 Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. Cancer J Clin 2024, 

74(1).
2.	 Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal 

A. Global cancer statistics 2022: GLOBOCAN estimates of incidence 
and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 
2024;74(3):229–63.

3.	 Mars N, Widén E, Kerminen S, Meretoja T, Pirinen M, della Briotta Parolo P, 
Palta P, Palotie A, Kaprio J. The role of polygenic risk and susceptibility genes 
in breast cancer over the course of life. Nat Commun. 2020;11(1):6383.

4.	 Kapoor PM, Mavaddat N, Choudhury PP, Wilcox AN, Lindström S, Behrens 
S, Michailidou K, Dennis J, Bolla MK, Wang Q. Combined associations of a 
polygenic risk score and classical risk factors with breast cancer risk. JNCI: J 
Natl Cancer Inst. 2021;113(3):329–37.

5.	 Acheampong T, Kehm RD, Terry MB, Argov EL, Tehranifar P. Incidence trends 
of breast cancer molecular subtypes by age and race/ethnicity in the US 
from 2010 to 2016. JAMA Netw Open. 2020;3(8):e2013226–2013226.

6.	 Qing T, Mohsen H, Marczyk M, Ye Y, O’Meara T, Zhao H, Townsend JP, Gerstein 
M, Hatzis C, Kluger Y. Germline variant burden in cancer genes corre-
lates with age at diagnosis and somatic mutation burden. Nat Commun. 
2020;11(1):2438.

7.	 Minteer CJ, Thrush K, Gonzalez J, Niimi P, Rozenblit M, Rozowsky J, Liu J, Frank 
M, McCabe T, Sehgal R. More than bad luck: cancer and aging are linked to 
replication-driven changes to the epigenome. Sci Adv. 2023;9(29):eadf4163.

8.	 Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 
2022;12(1):31–46.

9.	 Danforth DN Jr. Genomic changes in normal breast tissue in women at 
normal risk or at high risk for breast cancer. Breast Cancer: Basic Clin Res. 
2016;10(BCBCR):S39384.

10.	 Troester MA, Hoadley KA, D’arcy M, Cherniack AD, Stewart C, Koboldt DC, 
Robertson AG, Mahurkar S, Shen H, Wilkerson MD. DNA defects, epigenetics, 
and gene expression in cancer-adjacent breast: a study from the cancer 
genome atlas. NPJ Breast cancer. 2016;2(1):1–7.

11.	 Gadaleta E, Thorn GJ, Ross-Adams H, Jones LJ, Chelala C. Field cancerization 
in breast cancer. J Pathol. 2022;257(4):561–74.

12.	 Lin Y, Wang J, Wang K, Bai S, Thennavan A, Wei R, Yan Y, Li J, Elgamal H, Sei E. 
Normal breast tissues harbour rare populations of aneuploid epithelial cells. 
Nature 2024:1–8.

13.	 Sherman ME, Figueroa JD, Henry JE, Clare SE, Rufenbarger C, Storniolo AM. 
The Susan G. Komen for the cure tissue bank at the IU Simon cancer center: 

a unique resource for defining the molecular histology of the breast. Cancer 
Prev Res. 2012;5(4):528–35.

14.	 Krueger F. Trim galore! A wrapper around cutadapt and FastQC to consis-
tently apply adapter and quality trimming to FastQ files, with extra function-
ality for RRBS data. Babraham Inst 2015. ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​​b​i​o​​i​n​f​o​​r​m​a​​t​i​​c​​s​.​​b​a​b​​r​a​h​​​a​
m​​.​​a​c​​​.​u​k​​/​p​r​​o​j​​e​​c​t​s​/​​t​r​i​m​_​g​a​l​o​r​e​/

15.	 Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler 
transform. bioinformatics 2009, 25(14):1754–1760.

16.	 McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, 
Garimella K, Altshuler D, Gabriel S, Daly M. The genome analysis toolkit: a 
mapreduce framework for analyzing next-generation DNA sequencing data. 
Genome Res. 2010;20(9):1297–303.

17.	 Chang T-C, Xu K, Cheng Z, Wu G. Somatic and germline variant calling from 
next-generation sequencing data. Computational methods for precision 
oncology. edn.: Springer; 2022. pp. 37–54.

18.	 Terraf P, Pareja F, Brown D, Ceyhan-Birsoy O, Misyura M, Rana S, O’Reilly 
E, Carlo M, Aghajanian C, Liu Y. Comprehensive assessment of germline 
pathogenic variant detection in tumor-only sequencing. Ann Oncol. 
2022;33(4):426–33.

19.	 Sun R, Cingolani P, Pantazi A, Eifert C, Huang X, Bjonnes A, Lyle S, Protopopov 
A, Vuzman D. Germline and somatic SNVS calling in NGS panel tumor 
samples: Approaches to optimize tumor only genomic analysis for cancer 
precision medicine. In.: American Society of Clinical Oncology; 2017.

20.	 Jin Y, Schäffer AA, Sherry ST, Feolo M. Quickly identifying identical and 
closely related subjects in large databases using genotype data. PLoS ONE. 
2017;12(6):e0179106.

21.	 Jin Y, Schaffer AA, Feolo M, Holmes JB, Kattman BL. GRAF-pop: a fast 
distance-based method to infer subject ancestry from multiple genotype 
datasets without principal components analysis. G3: Genes Genomes Genet. 
2019;9(8):2447–61.

22.	 Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic 
variants from high-throughput sequencing data. Nucleic Acids Res. 
2010;38(16):e164–164.

23.	 Tan VY, Févotte C. Automatic relevance determination in nonnegative matrix 
factorization with The/spl beta/-divergence. IEEE Trans Pattern Anal Mach 
Intell. 2012;35(7):1592–605.

24.	 Kim J, Mouw KW, Polak P, Braunstein LZ, Kamburov A, Tiao G, Kwiatkowski 
DJ, Rosenberg JE, Van Allen EM, D’Andrea AD. Somatic ERCC2 mutations are 
associated with a distinct genomic signature in urothelial tumors. Nat Genet. 
2016;48(6):600–6.

25.	 Karlsson M, Zhang C, Méar L, Zhong W, Digre A, Katona B, Sjöstedt E, Butler 
L, Odeberg J, Dusart P. A single–cell type transcriptomics map of human 
tissues. Sci Adv. 2021;7(31):eabh2169.

26.	 Wu SZ, Al-Eryani G, Roden DL, Junankar S, Harvey K, Andersson A, Thennavan 
A, Wang C, Torpy JR, Bartonicek N. A single-cell and spatially resolved atlas of 
human breast cancers. Nat Genet. 2021;53(9):1334–47.

27.	 Michailidou K, Lindström S, Dennis J, Beesley J, Hui S, Kar S, Lemaçon A, Soucy 
P, Glubb D, Rostamianfar A. Association analysis identifies 65 new breast 
cancer risk loci. Nature. 2017;551(7678):92–4.

28.	 Milne RL, Kuchenbaecker KB, Michailidou K, Beesley J, Kar S, Lindström S, 
Hui S, Lemaçon A, Soucy P, Dennis J. Identification of ten variants associ-
ated with risk of estrogen-receptor-negative breast cancer. Nat Genet. 
2017;49(12):1767–78.

29.	 Garcia-Closas M, Couch FJ, Lindstrom S, Michailidou K, Schmidt MK, Brook 
MN, Orr N, Rhie SK, Riboli E, Feigelson HS. Genome-wide association stud-
ies identify four ER negative–specific breast cancer risk loci. Nat Genet. 
2013;45(4):392–8.

30.	 Liu Q, Niu X, Li Y, Zhang J-r, Zhu S-j, Yang Q-y, Zhang W, Gong L. Role of the 
mucin-like glycoprotein FCGBP in mucosal immunity and cancer. Front 
Immunol. 2022;13:863317.

31.	 Suo Y, Hou C, Yang G, Yuan H, Zhao L, Wang Y, Zhang N, Zhang X, Lu W. Fc 
fragment of IgG binding protein is correlated with immune infiltration levels 
in hepatocellular carcinoma. Biomolecules Biomed. 2023;23(4):605.

32.	 Yan T, Tian D, Chen J, Tan Y, Cheng Y, Ye L, Deng G, Liu B, Yuan F, Zhang S. 
FCGBP is a prognostic biomarker and associated with immune infiltration in 
glioma. Front Oncol. 2022;11:769033.

33.	 Ding Q, Lin F, Huang Z, Li Y, Cai S, Chen X, Liu H, Qiu S. Non-coding RNA-
related FCGBP downregulation in head and neck squamous cell carcinoma: a 
novel biomarker for predicting Paclitaxel resistance and immunosuppressive 
microenvironment. Sci Rep. 2024;14(1):4426.

34.	 Payne V, Kam P. Mast cell tryptase: a review of its physiology and clinical 
significance. Anaesthesia. 2004;59(7):695–703.

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs003822.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs003822.v1.p1
https://komentissuebank.iu.edu/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/


Page 13 of 13Dai et al. Breast Cancer Research           (2025) 27:60 

35.	 Majorini MT, Colombo MP, Lecis D. Few, but efficient: the role of mast cells in 
breast cancer and other solid tumors. Cancer Res. 2022;82(8):1439–47.

36.	 Kim J, Kim S, Ko S, In Y, Moon HG, SK A, Kim MK, Lee M, Hwang JH, Ju YS. 
Recurrent fusion transcripts detected by whole-transcriptome sequenc-
ing of 120 primary breast cancer samples. Genes Chromosom Cancer. 
2015;54(11):681–91.

37.	 Ren X, Graham JC, Jing L, Mikheev AM, Gao Y, Lew JP, Xie H, Kim AS, Shang X, 
Friedman C. Mapping of Mcs30, a new mammary carcinoma susceptibility 
quantitative trait locus (QTL30) on rat chromosome 12: identification of fry as 
a candidate Mcs gene. PLoS ONE. 2013;8(9):e70930.

38.	 Liu Y, Chen X, Gong Z, Zhang H, Fei F, Tang X, Wang J, Xu P, Zarbl H, Ren X. 
Fry is required for mammary gland development during pregnant periods 
and affects the morphology and growth of breast cancer cells. Front Oncol. 
2019;9:1279.

39.	 Muszbek L, Bereczky Z, Bagoly Z, Komáromi I, Katona É. Factor XIII: a coagula-
tion factor with multiple plasmatic and cellular functions. Physiol Rev. 
2011;91(3):931–72.

40.	 Xu P, Wang J, Tao Y, Zhang C, Xia Y. MicroRNA-1271-5p suppresses the prolif-
eration, invasion and migration of oral squamous cell carcinoma by inhibiting 
F13A1 expression. Mol Cell Toxicol 2023:1–10.

41.	 Tinholt M, Tekpli X, Torland LA, Tahiri A, Geisler J, Kristensen V, Sandset PM, 
Iversen N. The breast cancer coagulome in the tumor microenvironment 
and its role in prognosis and treatment response to chemotherapy. J Thromb 
Haemost. 2024;22(5):1319–35.

42.	 Uboveja A, Huang Z, Buj R, Amalric A, Wang H, Tangudu NK, Cole AR, Megill 
E, Kantner D, Chatoff A. αKG-mediated carnitine synthesis promotes homolo-
gous recombination via histone acetylation. bioRxiv 2024.

43.	 Liao C, Zhang Y, Fan C, Herring LE, Liu J, Locasale JW, Takada M, Zhou J, Zurlo 
G, Hu L. Identification of BBOX1 as a therapeutic target in triple-negative 
breast cancer. Cancer Discov. 2020;10(11):1706–21.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	﻿Genomic alterations in normal breast tissues preceding breast cancer diagnosis
	﻿Abstract
	﻿Background
	﻿Methods
	﻿Breast tissue samples
	﻿DNA extraction and library Preparation
	﻿Whole exome sequencing and data processing
	﻿Ancestry inferred from genotypes
	﻿High functional impact variants
	﻿Mutational signature analysis
	﻿Expression data of normal breast and invasive breast cancer
	﻿Statistical analysis

	﻿Results
	﻿Study participant characteristics
	﻿The mutational landscape of breast tissues
	﻿High functional impact variants more frequently mutated in pre-diagnosis breast tissues
	﻿Expression levels of the ﻿FCGBP﻿, ﻿TPSB2﻿, ﻿F13A1﻿, ﻿FRY﻿, ﻿TMLHE﻿, and ﻿SCN1A﻿ genes in breast tissues and in different cell types in the breast

	﻿Discussion
	﻿Conclusions
	﻿References


