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Abstract 

Background  Incidence of premenopausal breast cancer (BC) has risen in recent years, though most existing BC 
prediction models are not generalizable to young women due to underrepresentation of this age group in model 
development.

Methods  Using questionnaire-based data from 19 prospective studies harmonized within the Premenopausal 
Breast Cancer Collaborative Group (PBCCG), representing 783,830 women, we developed a premenopausal BC 
risk prediction model. The data were split into training (2/3) and validation (1/3) datasets with equal distribution 
of cohorts in each. In the training dataset variables were chosen from known and hypothesized risk factors: age, age 
at menarche, age at first birth, parity, breastfeeding, height, BMI, young adulthood BMI, recent weight change, alcohol 
consumption, first-degree family history of BC, and personal history of benign breast disease (BBD). Hazard ratios (HR) 
and 95% confidence intervals (CI) were estimated by Cox proportional hazards regression using age as time scale, 
stratified by cohort. Given that complete information on all risk factors was not available in all cohorts, coefficients 
were estimated separately in groups of cohorts with the same available covariate information, adjusted to account 
for the correlation between missing and non-missing variables and meta-analyzed. Absolute risk of BC (in situ or inva-
sive) within 5 years, was determined using country-, age-, and birth cohort-specific incidence rates. Discrimination 
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(area under the curve, AUC) and calibration (Expected/Observed, E/O) were evaluated in the validation dataset. We 
compared our model with a literature-based model for women < 50 years (iCARE-Lit).

Results  Selected model risk factors were age at menarche, parity, height, current and young adulthood BMI, family 
history of BC, and personal BBD history. Predicted absolute 5-year risk ranged from 0% to 5.7%. The model overesti-
mated risk on average [E/O risk = 1.18 (1.14–1.23)], with underestimation of risk in lower absolute risk deciles and over-
estimation in upper absolute risk deciles [E/O 1st decile = 0.59 (0.58–0.60); E/O 10th decile = 1.48 (1.48–1.49)]. The AUC 
was 59.1% (58.1–60.1%). Performance was similar to the iCARE-Lit model.

Conclusion  In this prediction model for premenopausal BC, the relative contribution of risk factors to absolute risk 
was similar to existing models for overall BC. The discriminatory ability was nearly identical (< 1% difference in AUC) 
to the existing iCARE-Lit model developed in women under 50 years. The inability to improve discrimination high-
lights the need to investigate additional predictors to better understand premenopausal BC risk.

Keywords  Risk prediction model, Premenopausal breast cancer, Young-onset breast cancer

Introduction
Breast cancer (BC) is the leading cancer diagnosis and 
the leading cause of cancer death among women world-
wide [1–4]. While diagnosis prior to menopause is 
less common than postmenopausal diagnosis, younger 
age at diagnosis often involves a more aggressive form 
of disease and is associated with worse prognosis [2, 
5–7]. Moreover, younger women are less likely to be 
diagnosed through screening, as the World Health 
Organization and most country-specific commissions 
recommend mammographic screening for average risk 
women beginning at 50 years of age [8–10], though the 
US has recently lowered the recommended starting age 
to 40–45 years [11, 12]. Rising incidence of premeno-
pausal BC globally in recent decades [2, 13] highlights 
the need to understand risk of BC in young women 
better, to inform clinical surveillance among younger 
women.

While several risk prediction models for overall BC 
with similar sets of risk factors are widely used, includ-
ing Gail [14], Tyrer-Cuzick [15], and BOADICEA [16, 
17] models, most have been developed among primarily 
postmenopausal women [18]. This limits generalizability 
to premenopausal women, especially given that associa-
tions of some established risk factors, such as adipos-
ity [19, 20], differ by menopausal status, and other risk 
factors, such as breastfeeding [21] and recent weight 
change [22], are hypothesized to be more strongly asso-
ciated with BC risk in premenopausal women. Thus, 
performance of existing models is generally worse for 
premenopausal v. postmenopausal women, with lower 
discriminatory ability and overestimation of risk seen 
among the premenopausal group [23–25]. Only one 
model to date has been specifically developed for women 
< 50 years of age, though relative risk contributions were 
derived from existing literature and not modeled within 
cohort data (iCARE ‘synthetic’ model, hereafter: iCARE-
Lit) [26–29].

Here, we leveraged a large international consortium, 
the Premenopausal Breast Cancer Collaborative Group 
(PBCCG), to select model risk factors from a set of previ-
ously established and hypothesized risk factors that are 
widely available from standard survey questionnaires and 
develop a 5-year absolute risk prediction model in pre-
menopausal women. We considered reproductive and 
lifestyle factors, anthropometrics, and personal and fam-
ily history.

Methods
Cohort
The PBCCG was created to study risk factors for premen-
opausal BC by combining data from prospective cohort 
studies across Europe, North America, Asia, and Aus-
tralia. Details on cohort design and data harmonization 
have been described [30]. Briefly, cohorts were eligible 
to join PBCCG if they had more than 100 cases BC diag-
nosed before age 55. To date, 22 cohorts have provided 
baseline questionnaire data, follow-up questionnaire 
data (where available, N= 17 cohorts), and incident case 
information to one of two centralized data repositories. 
Cases (in situ and invasive BC) diagnosed before meno-
pause were identified by self-report, medical record, and/
or linkage to cancer registries. Menopausal status was 
defined using data from multiple questionnaire cycles by 
(a) self-reported age at menopause (31%), or, where miss-
ing, (b) age first known to be postmenopausal if under 50 
(1%), or (c) age last known premenopausal if over age 50 
(15%), or (d) age 50 if no information on menopausal sta-
tus was provided (53%). At least one follow-up cycle after 
age 55 was requested from each cohort to enable retro-
spective classification of menopausal status if necessary 
[30, 31]. Variables for future analyses were harmonized 
using a common protocol at the data centers [30].

Nineteen cohorts were included in this analysis, rep-
resenting Asia (N = 2), Europe (N = 6), the United States 
(N = 10), and Australia (N = 1).
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Statistical analyses
Individuals were assigned to multiple 5-year risk inter-
vals based on age throughout follow-up, with covari-
ates updated over time based on the most recent 
questionnaire, with censoring at age of menopause. 
Within individual cohort studies, if missing for only some 
individuals, age at menarche, alcohol consumption, BMI 
at age 18–24 years, and breastfeeding duration were 
imputed with median values (Table  S1). This method 
was used given low within-cohort missingness (< 10% 
for each variable within each cohort, details provided 
in: Supplemental Methods “Within-cohort imputation”) 
and given that low correlations between BC risk factors 
inhibits usefulness of conditional imputation. Yearly BMI 
was imputed using linear interpolation to allow for the 
calculation of recent weight change.

To facilitate internal model validation, the sample was 
split randomly within cohorts (two-thirds allocated to 
training dataset and one-third to validation dataset). 
Model building steps were performed within the training 
dataset, using STATA version 16 [32]. Cox proportional 
hazards regression [33, 34], with age as the underlying 
time-scale and stratified by cohort, was used to estimate 
hazard ratios (HR) and 95% confidence intervals (CI) 
for premenopausal BC. Availability of model variables 
of interest varied by cohort due to either lack of initial 
cohort data collection or lack of integration into the ver-
sion of the harmonized dataset used in this analysis. Vari-
ables were selected from the following set of established 
and hypothesized risk factors if p < 0.05 by groupwise for-
ward selection: first-degree family history of BC, repro-
ductive factors (age at menarche, parity, age at first birth, 
breastfeeding), anthropometrics (height, BMI, BMI at age 
18–24, recent weight change), current alcohol intake, and 
personal history of BBD. This method was used to enable 
incorporation of data from all cohorts in variable selec-
tion, despite differences in availability of certain vari-
ables. Details on the selection of variables are provided 
in the Supplemental Methods. To ensure that variables 
identified as model predictors were not dependent on 
this selection method, we also performed backwards 
selection within the set of cohorts with information avail-
able on all variables of interest (N = 8 cohorts).

After selection, linearity was assessed using Martingale 
residuals and the assumption of proportional hazards 
was tested visually by checking plots of Schoenfeld resid-
uals by age in the full model and -ln(-ln(Survival prob-
ability) vs. ln(age), and statistically, by interaction tests 
between each variable and age. No substantial deviations 
from linearity or proportional hazards were detected (see 
Supplemental Methods). Because some variables selected 
into the final model were not available in all cohorts, 
final risk model coefficients (HRs) were estimated using 

covariance adjustment and a generalized meta-analysis 
approach [35]. First, cohorts were grouped based on 
which of the required regression variables were avail-
able. Cox models were run for each group of cohorts. 
For groups missing the same set of covariates, coefficient 
estimates for the available covariates were adjusted using 
the covariance matrix from the studies with complete 
covariate data. Adjusted estimates were then meta-ana-
lyzed with weighting by the inverse variance (see Sup-
plemental Methods). Model coefficients were compared 
to those derived directly from the subset of cohorts with 
complete covariate data.

Absolute risk estimates were calculated as:

where i = country, j = 5-year age groups, k = birth year, 
and lp = linear predictor from the Cox model. Incidence 
rates ( IRijk)were obtained from the International Agency 
for Research on Cancer (IARC)’s Global Cancer Observa-
tory (GCO) project (2020), available by region, country, 
5-year age groups, and birth cohort from various cancer 
registries [36, 37]. To align with absolute risk assignment 
used in existing risk models and ensure incident rates 
represented average rates within our cohort [14], the 
obtained IRijk was divided by RRijk, the mean relative risk 
(explp) in country i, age group j, and birth year k in our 
training data sets [14].

Model performance was evaluated in the validation 
dataset. Discrimination was measured by the area under 
the curve (AUC) based on (1) linear predictor deciles and 
(2) absolute risk deciles. Expected and observed relative 
and absolute risks were calculated and plotted by train-
ing data-determined relative or absolute risk deciles, 
respectively [38]. For calibration within individual stud-
ies, deciles were recalculated based on the training data 
for each study.

We compared performance of our model among the 
subset of women < 50 y of age with that of the iCARE-Lit 
model [26–29]. Five-year age group-specific SEER inci-
dence rates were applied when calculating absolute risk 
for both prediction models. Details are provided in Sup-
plemental Methods.

Invasive‑only model
Given that knowledge of risk of in situ or invasive BC can 
inform screening in younger women, we focused on BC 
overall as our primary outcome. However, because eti-
ologies of invasive and in situ BC may differ, it is impor-
tant to separately consider invasive cases. We repeated 
all analyses using invasive BC as the outcome to account 
for potential biological differences, to ensure accurate 

5y absolute risk = years in age groupj ×
IRijk

RRijk
× explp
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assignment of global incidence rates, and to facilitate 
comparison of this model with iCARE-Lit, which was 
developed among invasive cases [29, 38]. Individuals who 
developed in situ BC were censored at time of diagnosis.

Among invasive BC cases, we further included a sensi-
tivity analysis testing model variable selection and model 
performance for ER + and ER- BC separately, censoring 
at time of BC diagnosis of opposite or unknown subtype.

Results
The analytic cohort included 783,830 premenopausal 
women, with 9,618 incident premenopausal BC cases 
followed for 8.1 years on average (max = 25.2 y). The 
majority of participants were from North America and 
Western Europe (Table  1) and were White (58%) and 
non-Hispanic (99%) (Table  2). The average age at base-
line questionnaire was 39.9 years (standard deviation, SD 
= 6.9 y). Most (79%) were parous, with mean age at first 
birth of 25 years, and 2 births and 15 months of breast-
feeding on average. Approximately 10% of the cohort 
reported a first-degree family history of BC and 17% 
reported a personal history of BBD. Average BMI at most 
current questionnaire cycle was 24.0 kg/m2 (SD = 4.5 

kg/m2), with a lower BMI reported in young adulthood 
[mean (SD) = 21.2 (3.1) kg/m2]. Mean four-year weight 
change prior to the most current questionnaire was + 0.5 
kg (Table 2). Approximately 50% of the cohort were cur-
rent alcohol drinkers. Aside from variables missing by 
design (Table  S2), missingness was low within-cohorts 
(< 10%) (Supplemental Methods). Compared to the full 
cohort, in the subset of cohorts with no model variables 
missing by design (N = 426,128, cases = 5,704), BBD his-
tory was more common (31% vs. 17%), while means and 
proportions of other variables were similar (Table S3).

Relative risk model
Variables selected in the model were age at menarche, 
parity, height, BMI (current and young adulthood), per-
sonal history of BBD, and first-degree family history of 
BC (Table  3). Variables were consistent when select-
ing among studies with complete covariate data only 
and coefficients for the prediction model determined 
from generalized meta-analysis were similar to those 
calculated for this subset (N = 284,149, cases = 3,777) 
(Table  3, Table  S4). Lower risk of premenopausal BC 
was observed with increasing age at menarche [adjusted 

Table 1  Distribution of 19 cohorts in the PBCCG (N = 783,830, breast cancer cases = 9,618)

Cohort Acronym N (%) Cases (%)

Europe

  BCN Generations Study BGS 61,303 (7.8%) 458 (4.8%)

  Etude Epidemiologique aupres de femmes de la Mutuelle Generale de 
L’Education Nationale

E3 N 58,360 (7.5%) 1081 (11.2%)

  European Prospective Investigation into Cancer and Nutrition EPIC 89,464 (11.4%) 921 (9.6%)

  The HUNT2 Study HUNT2 16,955 (2.2%) 44 (0.5%)

  Norwegian Women and Cancer Study NOWAC​ 76,001 (9.7%) 427 (4.4%)

  Swedish Mammography Cohort SMC 26,329 (3.4%) 157 (1.6%)

  The Swedish Women’s Lifestyle and Health Study SWLHS 47,371 (6.0%) 243 (2.5%)

North America (United States)

  California Teachers Study CTS 46,251 (5.9%) 628 (6.5%)

  Campaign against Cancer and Heart Disease CLUEII 4,099 (0.5%) 47 (0.5%)

  Mayo Mammography Health Study MMHS 5,017 (0.6%) 53 (0.6%)

  Nurses’Health Study NHS 95,012 (12.1%) 1937 (20.1%)

  Nurses’Health Study II NHSII 115,623 (14.8%) 2397 (24.9%)

  NYU Women’s Health Study NYUWHS 6,688 (0.9%) 197 (2.0%)

  The Sister Study SIS 16,877 (2.2%) 374 (3.9%)

  Southern Community Cohort Study SCCS 14,126 (1.8%) 55 (0.6%)

  US Radiologic Technologists Cohort USRTC​ 52,559 (6.7%) 412 (4.3%)

Asia

  Shanghai Women’s Health Study SWHS 33,707 (4.3%) 85 (0.9%)

  Singapore Chinese Health Study SCHS 9,989 (1.3%) 38 (0.4%)

Australia

  Melbourne Collaborative Cohort Study MCCS 8,099 (1.0%) 64 (0.7%)

Total 783,830 9,618
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HR (aHR) per year (95% CI) = 0.96 (0.94–0.97)], parity 
[aHR per child = 0.88 (0.84–0.91)], current BMI [aHR 
per 5  kg/m2 = 0.88 (0.82–0.95)], and BMI in young 
adulthood (aHR per 5 kg/m2 = 0.92 (0.85–1.01)], while 
higher risk was observed with height [aHR per 10 cm 
= 1.12 (1.03–1.21)], personal history of BBD [aHR 
= 1.55 (1.45–1.66)], and first-degree family history of 
BC [aHR = 1.72 (1.59–1.85)]. The magnitude of the lin-
ear predictor, which estimates the log relative risk for 
an individual based on their covariate distribution, var-
ied substantially by cohort (Table S5).

Table 2  Characteristics of participants from 19 cohort studies 
within the PBCCG (N = 783,830, breast cancer cases = 9,618)

Characteristic Mean (SD) or N (%)a

Race/Ethnicity

  White 455,286 (58%)

  Black 18,836 (2.4%)

  Asian 49,200 (6.3%)

  Hispanic 5,094 (< 1%)

  Other/Unknown 251,791 (32%)

Age at baseline questionnaire (years) 39.9 (6.9)

Age at menarche (years) 12.8 (1.5)

Height (cm) 164.2 (6.5)

BMI (kg/m2) 24.0 (4.5)

Missing 11,310 (1.4%)

BMI age 18–21 (kg/m2)b 21.2 (3.1)

  Missing 23,602 (3.0%)

4-y weight change (kg)b 0.5 (1.8)

  Missing 35,403 (4.5%)

Current alcohol drinker (yes) 393,978 (50%)

  Missing current alcohol use 241,439 (31%)

Alcohol (drinks/week, among current drinkers)b 4.2 (8.1)

  Missing 40,716 (65%)

Family history of BCb 77,747 (9.9%)

  Missing 55,482 (7%)

History of benign breast diseaseb 134,266 (17%)

  Missing 348,889 (44%)

Parous 618,405 (79%)

  Parity (among parous) 2.2 (1.1)

    Missing 6 (<0.1%)

  Age at first birth (among parous) 25.2 (4.5)

    Missing 4,670 (0.8%)

  Breastfeeding months (among parous)b 15 (11.8)

    Missing 120,085 (19%)

Breast cancer cases 9,618 (1.2%)
Age at diagnosis (years) 46.4 (4.8)

In situ 1673 (17%)

Invasive 7,914 (82%)

    Stage I 2393 (25%)

    Stage II 1843 (19%)

    Stage III 605 (6.3%)

    Stage IV 123 (1.3%)

    Unknown 3460 (32%)

In situ vs. invasive status missing 31 (0.3%)

ER Status

  Positive 4,735 (49%)

  Negative 1,517 (16%)

Borderline/Unknown 3,366 (35%)

PR status

  Positive 4,097 (43%)

  Negative 1,717 (18%)

  Borderline/Unknown 3,799 (39%)

ER Estrogen receptor, PR Progesterone receptor, HER2 Human epidermal growth 
receptor 2
a Mean (SD) and N (%) after within-cohort imputation
b Among cohorts without variable missing by design

Table 2  (continued)

Characteristic Mean (SD) or N (%)a

HER2 Status

  Positive 657 (6.8%)

  Negative 2,877 (30%)

  Borderline/Unknown 6,084 (63%)

Table 3  Beta coefficients and hazard ratios (HR) and 95% 
confidence intervals (CI) for the PBCCG risk model for 
premenopausal breast cancer

BBD Benign breast disease, BMI Body mass index, PBCCG​ Premenopausal Breast 
Cancer Collaborative Group
a Estimates from training dataset, N = 522,700 Cases = 6,392
b Cohorts include those with no model variables missing by design: BCN 
Generations Study, E3 N, Nurses’ Health Study, Nurses’ Health Study II, The Sister 
Study, Women’s Lifestyle and Health Study, Shanghai Women’s Health Study. 
Estimates from training data, N = 284,149, Cases = 3,777
c Beta estimates calculated following generalized meta-analysis with random 
effects model, mutually adjusted for all listed variables
d Beta estimates calculated directly from Cox PH model results among complete 
case dataset, mutually adjusted for all listed variables
e Estimated per 10 cm
f Estimated per 5 kg/m2

Full Dataseta Subset with 
complete 
covariate datab

Variable Beta HR (95% CI)c HR (95% CI)d

Age at menarche (per 
year)

−0.046 0.96 (0.94–0.97) 0.95 (0.93–0.98)

Parity (per child) −0.131 0.88 (0.84–0.91) 0.89 (0.87–0.92)

Height (cm)e 0.110 1.12 (1.03–1.21) 1.17 (1.11–1.23)

BMI (kg/m2)f −0.124 0.88 (0.82–0.95) 0.92 (0.88–0.95)

BMI age 18–24 (kg/m2)f −0.079 0.92 (0.85–1.01) 0.89 (0.83–0.96)

History of BBD 0.440 1.55 (1.45–1.66) 1.55 (1.45–1.67)

Family history of BC 0.541 1.72 (1.59–1.85) 1.72 (1.58–1.87)
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Absolute risk & model calibration
Five-year absolute risk of BC ranged from 0.00017% to 
5.65% for all individuals (Table  S5). Overall, the model 
overestimated absolute risk of premenopausal BC [E/O 
(95% CI = 1.18 (1.14–1.23)] (Table  S6), though calibra-
tion varied widely across cohorts. Overestimation was 
similar in the subset with complete covariate data [E/O 
= 1.19 (1.14–1.25)] (Table S7). The absolute risk of devel-
oping BC was underestimated in lower deciles of absolute 
risk and overestimated in higher deciles of risk, (Table 4, 
Fig. 1A). Calibration of relative risk based on covariate-
determined risk score deciles showed less overestimation 
in the upper tails (Fig. 1B). In the subset with complete 
covariate data, absolute risk calibration was similar, and 
relative risk was well-calibrated (Figure S1 A, S1B).

Model discrimination was modest, with an AUC of 
59.1% (58.1–60.1%) for the full model (Table  S6) and 
similar discrimination in the complete case subset (AUC 
= 60.2%, 95% CI = 58.9–61.4%) (Table  S7). Overestima-
tion was particularly high for the Asian cohorts with lim-
ited case numbers.

Comparison with iCARE‑Lit < 50 model
Most variables are the same between our model and 
the iCARE-Lit model, with the exception of alcohol 
consumption and oral contraceptive use (both used in 
iCARE-Lit). Given the lack of consistent information on 
current oral contraceptive use in PBCCG, we considered 
all participants to be missing this variable when calculat-
ing the iCARE-Lit risk. When restricting to women < 50 

years of age and comparing our model to the iCARE-
Lit model (excluding use of OCs given missing data in 
PBCCG) performance was similar [our model: AUC 
= 59.8 (58.2–61.4), E/O = 1.20 (1.13–1.27) vs. iCARE-Lit 
< 50: AUC = 60.7 (59.0–62.3), E/O = 1.20 (1.13–1.27)].

Invasive BC model
There were 7,914 invasive BC cases within the PBCCG 
cohorts (Table  S8). Among those with known estro-
gen receptor (ER) status, most (75%) had ER + BC 
(Table S9). The relative risk model included all variables 
selected in the in situ + invasive model plus alcohol con-
sumption. Following meta-analysis, HR estimates were 
similar to those in the in  situ + invasive model. Though 
current alcohol was selected into the model as a signifi-
cant predictor for the full cohort using our procedure 
(see Supplemental Methods), the HR was not signifi-
cant in the full cohort after meta-analysis accounting 
for all cohorts [aHR (95% CI) drinks/week = 1.01 (0.99–
1.02)] (Table  S10). Alcohol intake remained modestly 
significantly associated with risk in the complete case 
model [aHR (95% CI) drinks/week = 1.01 (1.00–1.02)] 
(Table S10).

Five-year absolute risk of invasive BC ranged from 
0.00018% to 5.67%. The invasive-only model overes-
timated risk more than the in  situ + invasive model 
[average E/O = 1.45 (95% CI = 1.39–1.50)]. Risk was 
underestimated in the lowest deciles of absolute risk to a 
lesser degree than in the in situ + invasive model, though 
risk was highly overestimated in upper risk deciles [e.g., 
in the 10 th decile of absolute risk, the model predicted 
87% more cases than observed (Table S11, Figure S2 A)]. 
Relative risk was well-calibrated (Figure S2B).

Among women < 50 years of age, discrimination and 
average calibration were similar for our model and the 
iCARE-Lit model [our model: AUC = 58.2% (56.3–60%), 
E/O = 1.49 vs. iCARE-Lit < 50: AUC = 59.3% (57.4–
61.1%), E/O = 1.49]. While the iCARE-Lit model was bet-
ter calibrated in lower risk deciles, overestimation was 
higher in upper risk deciles [e.g., E/O in decile 10 iCARE-
Lit = 2.17 (2.14–2.20) vs. our model = 1.66 (1.64–1.68)].

Model by ER status
Availability of ER-status of cases by cohort is provided in 
Table S12. Due to limited case numbers for ER-negative 
BC, we conducted a sensitivity analysis for ER-positive 
BC only. Variables selected for the ER-positive BC spe-
cific model were the same as those chosen in our over-
all model (Table S13), with a similar contribution to risk 
for age at menarche, height, parity, BMI, and BMI in 
young adulthood. Family history of BC and personal his-
tory of BBD were weaker risk factors in the ER-positive 

Table 4  Expected over observed (E/O) ratio and 95% confidence 
interval (CI) by decile of relative or absolute risk score among 19 
cohorts within the PBCCG in testing dataset (N = 261,130, breast 
cancer cases = 3,226)

a Linear predictor = loge relative risk for individual calculated by the prediction 
model
b Decile of relative risk and absolute risk scores determined by distribution in 
training dataset

E/O (95% CI)

Decile By linear predictor 
decilea,b

By absolute risk decileb

1 1.40 (1.39–1.42) 0.59 (0.58–0.60)

2 1.19 (1.18–1.20) 0.69 (0.68–0.70)

3 1.19 (1.18–1.19) 0.93 (0.92–0.94)

4 1.22 (1.21–1.23) 0.98 (0.98–0.99)

5 1.32 (1.31–1.33) 1.02 (1.01–1.02)

6 1.12 (1.12–1.13) 1.04 (1.04–1.05)

7 1.12 (1.11–1.13) 1.23 (1.22–1.24)

8 1.11 (1.10–1.11) 1.35 (1.34–1.36)

9 1.20 (1.20–1.21) 1.41 (1.41–1.42)

10 1.15 (1.14–1.15) 1.48 (1.48–1.49)
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specific model (Table  S13). The ER-positive set overes-
timated BC risk [E/O overall ER-positive = 2.43 (2.30–
2.56)] (Table  S14, Figure S3), which may in part to the 
large amount of missingness for ER-status. Discrimina-
tion of the ER-positive model was similar to the overall 
invasive model [ER-positive: AUC by linear predictor 
= 58.0% (56.5–59.5%), AUC by absolute risk = 62.2% 
(60.8–63.6%)].

Discussion
By pooling data from 19 international cohorts, we built 
an absolute risk prediction model for premenopausal BC 
informed by the largest set of data on premenopausal 
women to date. Our model tended to overestimate risk 
and discrimination remained modest, with performance 
similar to existing models for overall BC. Other cohorts, 
which have fewer premenopausal women and/or lim-
ited follow-up time compared to PBCCG, are unlikely to 

Fig. 1  Calibration for the risk model among 19 cohorts within the PBCCG. E/O within the testing dataset (N = 261,130, breast cancer cases = 3,226), 
for (A) absolute risk of BC a by decile of absolute risk in the training dataset and (B) relative risk of BC in the testing dataset, by decile of relative risk 
in the training dataset (log scale)
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produce better risk predictions using similar variables. 
To improve premenopausal BC risk prediction, it will 
be essential to incorporate additional known risk factors 
(e.g., OC use, polygenic risk score, and mammographic 
density), to increase granularity of data on existing vari-
ables, to test the contribution of novel risk factors such 
as early life environmental exposures, and to account for 
gene-environment interactions.

The variables selected in our premenopausal BC risk 
model matched those included in models for overall BC 
risk [14, 15, 17, 26]. It is important to note that, while our 
model included both ER-positive and ER-negative cases, 
given the much higher proportion of ER + cases, this sub-
type dominates our results. The strongest risk factors in 
our model were personal history of BBD and first-degree 
family history of BC, both of which had HRs consistent 
with previous models [14, 15, 29]. Personal history of 
BBD was associated with a 55% increased risk of premen-
opausal BC in this population, similar to values reported 
in the Gail model (HR for one biopsy if < 50 years = 1.70) 
[14], the Tyrer-Cuzick Model (HR for prior biopsy among 
women < 50 years = 1.26–2.0, depending on biopsy find-
ings) [15], and the iCARE-Lit model (HR for history of 
BBD = 1.68 for women) [26]. Current estimates for the 
contribution of family history to overall BC risk vary 
across the literature, with some using detailed pedigrees 
[15, 17], and others using simple first-degree family his-
tory [39]. We found that first-degree family history of 
BC was associated with a 72% higher risk of premeno-
pausal BC in this cohort, which is lower than estimates 
given for iCARE-Lit (< 50 model, aHR = 2.5) [29]. When 
modeling risk of ER + BC specifically, history of BBD and 
family history had a lower hazard ratio than in our overall 
model [aHR BBD = 1.21 (0.61–2.41), aHR family history 
= 1.67 (1.49–1.87)] suggesting these factors were poten-
tially influenced by risk of ER-negative BC.

Similarities in reproductive factors between our model 
and existing risk prediction models include inverse asso-
ciations of age at menarche and parity with premeno-
pausal BC risk. Interestingly, age at first birth was not 
selected in our model, although a younger age at first 
birth has been associated with lower risk in cohorts of 
majority postmenopausal women [14, 15, 29, 40]. The 
lack of predictive value may be explained by the lag 
time required after pregnancy to experience the ben-
efit of decreased BC risk following birth; for example, in 
the PBCCG, pregnancy was positively associated with 
BC risk up until 24 years after birth [41]. Based on vari-
ations in data collection methods across cohorts, we 
were unable to assess recency of last birth, which may 
be a more important predictor of risk within premeno-
pausal women [41]. While some studies have reported 
an inverse association between breastfeeding and risk of 

premenopausal BC [21, 42–44], breastfeeding was not 
selected in our model. Heterogeneity across molecular 
subtypes may have contributed to the lack of selection, as 
stronger protective associations have been reported for 
triple negative BC [43], and for luminal Bsubtypes [44]. 
It is also possible that our results were biased by the high 
percentage of missingness by design in PBCCG cohorts 
for breastfeeding.

Our finding that BMI in young adulthood contributed 
to risk prediction aligns with data suggesting stronger 
inverse associations between young adult BMI and BC 
among premenopausal (vs. postmenopausal) women 
[45–47]. The inverse association between adulthood 
BMI and premenopausal BC found here follows the para-
doxical relationship that is well-established in the litera-
ture [47]. While studies have shown increased BC risk 
among premenopausal women with short-term weight 
gain [22], and earlier age at BC diagnosis overall with 
increased annual adulthood weight gain [48], short-term 
weight change was not selected into our model. Lack of 
an observed association may be explained by the small 
average change over four years (+ 0.5 kg), and a narrow 
distribution of weight changes, precluding our ability to 
assess more extreme alterations. Further, because the lin-
ear interpolation method assumes constancy of weight 
change over questionnaire cycles, projected values may 
have been too small.

Our finding that alcohol consumption was selected as 
a predictor of invasive BC risk but not overall BC aligns 
with results from a study in the UK Biobank that found 
alcohol was not a risk factor for ductal carcinoma in situ 
[49]. Given that intake after in situ BC diagnosis has been 
associated with development of invasive BC [50], it is 
plausible that alcohol may play a role in later stages of BC 
development. However, the exclusion of this variable in 
our final model may simply be due to chance.

We did not assess the potential contribution of OC use 
and smoking to risk prediction due to limited detailed 
information available on these variables in the harmo-
nized dataset, beyond ever vs. never use for OCs and 
current smoking status, though both remain of interest. 
A recent meta-analysis found no association for ever vs. 
never OC use and premenopausal BC risk [51]; however, 
studies have shown increased premenopausal BC risk 
for current OC users [52], or recent (< 5 years ago) users 
[53]. Evaluation is complicated by evidence that the asso-
ciation between OC use and BC differs across molecular 
subtypes [54], and the wide variation of types and dos-
ages of OCs used across age groups, birth cohorts, and 
countries. Smoking has been shown to be associated with 
increased risk of BC only when incorporating informa-
tion on duration, intensity, and years of quitting smoking 
[55–57], and, timing of initiation before first childbirth 
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[57, 58]. In the future, detailed data collection for active 
and passive [59, 60] smoking and OC use should be 
prioritized.

Given the small absolute risk of premenopausal BC for 
most women, the assignment of appropriate population-
based incidence rates is essential to accurate risk predic-
tion. We attempted to account for geographic, age, and 
birth-cohort differences using data collected on invasive 
BC incidence rates from GCO data [36]. Despite this, 
absolute risks were overestimated, especially among 
those with higher risk profiles. While the estimation was 
imperfect due to our assignment of invasive BC inci-
dence rates to 1,673 in situ BC cases in our cohort, when 
predicting risk for invasive BC only, estimation was not 
improved. While this can be explained in part by differ-
ences in model specification, which disallows a direct 
comparison between models, the lack of improvement in 
the invasive-only model may be indicative of non-repre-
sentative incidence rates, perhaps due to within-country 
heterogeneity and varied quality of data for different 
birth cohorts.

Prior validation of established risk prediction mod-
els in the BCN Generations Study demonstrated AUCs 
based on relative risk scores similar to that of our model 
[Gail model (AUC = 54.6%), Tyrer-Cuzick model (AUC 
= 57.0%), and iCARE-Lit < 50y (AUC = 58.8%)] [26]. 
While the addition of polygenic risk score (PRS), patho-
genic variants, and mammographic density have been 
shown to enhance risk prediction in existing models [61], 
we did not have data to test these in PBCCG.

Though this is the largest study of premenopausal BC 
risk modeling to date, there are several limitations to 
note. First, the PBCCG is still overwhelmingly repre-
sented by majority White, Western European and North 
American Studies, and findings cannot be generalized to 
diverse populations. The large amount of missing data by 
design complicated model building and calibration; while 
we used selection methods and generalized meta-analysis 
to obtain the most informative set of variables and beta 
coefficients for our model, coefficient estimates may be 
biased due to missing data. While the harmonization of 
menopausal status information was carefully considered 
in the creation of the PBCCG, it is possible that we have 
misclassified some individuals missing explicit informa-
tion on menopausal status, limiting the performance of 
our risk prediction model.

Overall, the similarity of our model performance to 
the iCARE-Lit model demonstrates the difficulties of 
predicting premenopausal BC risk using variables read-
ily obtained from cohort questionnaires and medical 
records, even with substantial case numbers. The addi-
tion of genetic information and breast density may be a 
first step toward improving risk prediction. However, 

PRS and RR estimates for BC due to associated variants 
were developed using data from majority postmenopau-
sal women. Given that interactions between age and PRS, 
while minimal, have been shown [62], moving forward, 
it will be important to consider how germline variation 
uniquely influences premenopausal BC risk. Ultimately, 
further research into the mechanisms driving premeno-
pausal BC development is necessary to improve clinical 
risk prediction in younger women.

Conclusions
Here we developed and internally validated the first risk 
prediction model for premenopausal breast cancer, using 
questionnaire-based data from over 780,000 women. Our 
model performed similarly to a literature-derived model 
for women < 50 years of age, with performance statistics 
similar to those of existing risk prediction models (devel-
oped among primarily postmenopausal women). This 
indicates that additional variables and/or a deeper level 
of detail of questionnaire-based variables are needed to 
better predict premenopausal BC risk.
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