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breast cancer cell lines and 3 breast cancer 
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Abstract 

Intratumoral heterogeneity of breast cancer cells causes undesired drug resistance and predispose to disease 
recurrence. We investigate the molecular heterogeneity of breast cancer cells derived from malignant pleural effu‑
sions (MPE) to understand variations in drug resistance and cellular evolution. MPE provides a unique environment, 
with cells experiencing significant microenvironmental changes that promote intratumoral heterogeneity and thera‑
peutic resistance. By establishing 24 cell lines and 3 organoids from MPE samples of breast cancer patients, we 
performed extensive genomic, transcriptomic, and drug sensitivity analyses. Our findings reveal substantial genetic 
and transcriptomic diversity among MPE‑derived cell lines, highlighting dynamic alterations in driver mutations 
and signaling pathways that correlate with variable drug responses. Notably, temporal and spatial heterogeneity 
within patient‑derived samples emphasized the adaptability of breast cancer cells in MPE, as different subclones 
displayed distinct drug sensitivities. This work underscores the critical role of molecular profiling in understanding 
treatment resistance in breast cancer, presenting MPE‑derived cell lines as valuable preclinical models for exploring 
personalized therapies in aggressive cancer phenotypes.

Keywords Intratumoral Heterogeneity, Breast Cancer, Malignant Pleural Effusion, Drug Screening, Next Generation 
Sequencing

Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Breast Cancer Research

†Soon‑Chan Kim and Ga‑Hye Kim contributed equally to this work.

*Correspondence:
Seock‑Ah Im
moisa@snu.ac.kr
Ja‑Lok Ku
kujalok@snu.ac.kr
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13058-025-02032-7&domain=pdf


Page 2 of 18Kim et al. Breast Cancer Research           (2025) 27:66 

Introduction
Breast cancer is the most frequently diagnosed malig-
nancy worldwide [1], and the leading cause of cancer-
related death in females [2]. The rapid evolution of breast 
cancer results in highly heterogeneous clonal composi-
tion, contributing to therapeutic resistance and dismal 
prognosis [3]. Both spatial and temporal heterogeneity 
contribute to significant variances in tumor character-
istics such as proliferation, metastasis, and treatment 
response [4]. However, most prior studies have focused 
on spatial variations in tumor properties [5, 6], leaving 
the longitudinal dynamics of molecular profiles in breast 
cancer largely unexplored [7].

Malignant pleural effusion (MPE) is observed in 
5–11% of breast cancer patients, being the second most 
common after lung cancer. It is considered as a dismal 
prognostic factor, and the therapeutic response in MPE-
complicated breast cancer is generally poor [8, 9]. Previ-
ous studies have shown that tumor cells in MPE develop 
resistance to anoikis, adapt to hypoxic stress, and exhibit 
epithelial-mesenchymal transition (EMT), contribut-
ing to multidrug resistance and metastatic potential 
[10–12]. Moreover, comprehensive mutational profiling 
of MPE supernatants has demonstrated their potential 
as non-invasive surrogates for predicting therapeutic 
resistance. These malignant cells bring about unpredict-
able drug resistance and potentially spread to the pleu-
ral membrane and adjacent organs [13]. These findings 
underscore the need to further investigate drug resist-
ance mechanisms in MPE-derived tumor cells to inform 
personalized treatment strategies.

MPE has been a primary source for establishing breast 
cancer cell lines, including widely used cell lines such 
as MDA-MB-134, MDA-MB-175, and MDA-MB-231 
[14]. Tumor cells that invade the pleural cavity retain the 
majority of genetic alterations present in primary breast 
tumors, demonstrating their clinical value in diagnosis 
[15, 16]. In this study, we established 24 MPE-derived 
in  vitro models of breast cancer, including 13 cell lines 
derived from heavily treated breast cancer patients, 
which were subjected to genomic, transcriptomic, and 
in vitro drug sensitivity analyses. Our approaches aimed 
to investigate the molecular heterogeneity of breast can-
cer cells evading in the pleural cavity and to correlated 
with variable drug responses.

Materials and Methods
Establishment of breast cancer cell lines and organoids
The research protocol was reviewed and approved by the 
institutional review board of the Seoul National Univer-
sity Hospital (IRB No. 1102–098–357). The study was 
performed in accordance with the Declaration of Hel-
sinki. Written informed consent was obtained from all 

patients enrolled in this study. All samples were from 
patients in Seoul National University Hospital (Seoul, 
Republic of  Korea), and all participants were of Korean 
(East Asian) ethnicity.

Twenty cell lines were established from MPE and one 
cell line was established from malignant ascites. Three 
cell lines and organoids were gained from the patient-
derived xenograft (PDX), which was established from the 
body fluids of cancer patients; this was due to the scant 
cellularity of the body fluids, and we needed to expand 
the cellularity within the PDX to get a sufficient number 
of cancer cells.

For cell lines from MPE and ascites, suspended cells 
were gathered by spinning down. Gathered cell pellet 
were seeded into T-25 or T-75 flasks. Cancer cells were 
initially cultured in Opti-MEM I (Thermo Fisher Scien-
tific, MA, USA) with 5% fetal bovine serum (FBS). A con-
fined area trypsinization or scraping method was used 
to attain achieve pure tumor cells when stromal cells like 
mesothelial cells or fibroblasts grew in the initial culture. 
After primary culture, established cell lines were sus-
tained in RPMI 1640 (Thermo Fisher Scientific) with 10% 
fetal bovine serum and 1% (v/v) penicillin and streptomy-
cin (10,000U/mL). Incubated flasks in humidified incuba-
tors at 37℃ in an atmosphere of 5% CO2 and 95% air.

For cell lines and organoids established from PDX tis-
sues, PDX tumor tissue was cut finely with scissors for 
approximately 5 min. The enzyme solution consisting of 
Collagenase II (1.5 mg/mL), Hyaluronidase (20 µg/mL) 
and Ly27632 (10 µM) was added to the chopped tissue 
and incubated for 4 h at 37 ℃ while spinning. FCS was 
added for neutralization and the mixture was filtered 
through a 100 µM cell strainer (SPL, #93,100) to remove 
large chunks and impurities that were not cut well. Cells 
were spun down at 1,000 rpm for 3 min. For cell line cul-
tures, same method previously introduced in cell lines 
culture was applied. For organoid cultures, the cell pellet 
was resuspended with the appropriate amount of base-
ment membrane extracts (BME) gel (Gibco, A14132-
02), and the mixture was plated in droplets of 50–100 µL 
each. The mixture was left for 10 min to allow the BME 
gel to solidify, and then the HBEC medium (Basal cul-
ture medium with 50% Wnt conditioned medium, 20% 
R-Spondin conditioned medium, 10% Noggin condi-
tioned medium, 1 × B27 (Gibco, 17,504–044), 1.25 mM 
n-Acetyl cysteine (Sigma, A7250), 5  mM Nicotinamide, 
5 nM Neuregulin (Peprotech, 100–03), 500 nM A83-01, 
500 nM SB202190 (Sigma, S7067), 5 mM Ly27632, 5 ng/
mL human EGF (Peprotech, AF-100–15), 20 ng/mL 
human FGF-10 (Peprotech, 100–26), 5  ng/mL human 
FGF-7 (Peprotech, 100–19) and 50 µg/mL Primocin 
(Thermo, ant-pm-1)) was added and incubated at 37 ℃. 
Established cell lines and organoids were deposited to 
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Korean Cell Line Bank (KCLB, Seoul, Republic of Korea) 
and will be distributed upon request.

Maintenance of breast cancer organoids
The culture medium was aspirated, and the BME gel was 
mechanically dissociated through repeated pipetting. The 
mixture of organoids and gel was centrifuged at 1,000 
rpm for 3 min, and the medium was suctioned. Approxi-
mately 5  mL of Triple Express (Invitrogen) was added, 
and the mixture was incubated at 37 ℃ for approxi-
mately 10 min. After 5  min, the size of the organoids 
was checked and the gel was removed every minute. To 
neutralize, FCS and medium were added, and loose cells 
were spun down at 1,500 rpm for 3 min. After mixing the 
pellet with the appropriate amount of gel, the mixture 
was plated in droplets of 50–100 µL each. The mixture 
was left for 10 min to allow the BME gel to solidify, and 
then the HBEC medium was added. The medium was 
typically changed every week.

Growth properties and morphology in vitro
To determine the doubling time for each tumor popu-
lation, 5 ×  103/mL to 2 ×  104/mL viable cells from each 
cell line were seeded into 12–24 identical wells of a 96 
well-plate. Cell viability was assessed daily for 5–12 days. 
Starting from the initial seeding, every 24 h, 10 µL of EZ-
Cytox solution (Daeil Lab, Seoul, Republic of Korea) was 
added to each well containing breast cancer cells, in trip-
licate. After a 2 h incubation at 37℃, the optical density 
of the EZ-Cytox-treated cells was measured using the 
Multiskan™ GO Microplate Spectrophotometer (Thermo 
Fisher Scientific, MA). Growth rate values were calcu-
lated using GraphPad Prism 5 (GraphPad Software, CA, 
USA). To observe the morphology of each cell line, cells 
were cultured in T-75 flasks and photographed daily 
using phase-contrast microscopy.

Genomic DNA extraction and DNA fingerprinting analysis
Genomic DNA (gDNA) was extracted using the QIAamp 
DNA Mini kit (Qiagen). gDNA extracted from each 
breast cancer cell line and organoid was amplified using 
an AmpFlSTR identifier Polymerase Chain Reaction 
(PCR) Amplification Kit (Applied Biosystems, CA, USA). 
A single cycle of PCR amplified 15 short tandem repeat 
markers (CSF1PO, D2S1338, D3S1358, D5S818, D7S820, 
D8S1179, D13S317, D16S539, D18S51, D19S433, 
D21S11, FGA, TH01, TPOX and VWA) and an amelo-
genin gender-determining marker containing highly 
polymorphic microsatellite markers. Amplified PCR 
products were analyzed using an ABI 3500XL Genetic 
analyzer (Applied Biosystems).

Genomic DNA Mycoplasma detection test
gDNA extracted from each breast cancer cell line and 
organoid was amplified using an TaKaRa PCR Myco-
plasma Detection Set (TAKARA BIO INC., Shiga, Japan). 
This kit allows detection of several different species of 
Mycoplasma (M. fermentans, M. hyorhinis, M. argin-
ini, M. orale, M. salivarium, M. hominis, M. pulmonis, 
M. arthritidis, M. neurolyticum, M. hyopneumoniae, M. 
capricolum) and one species of Ureaplasma (U. urealyti-
cum). The method involves amplifying the spacer regions 
in the rRNA operon specifically the region between the 
16S and 23S genes, which were designed based on the 
DNA encoding of the 16S and 23S rRNAs.

Drug sensitivity analysis using two‑dimension (2D) cell 
lines culture models
To measure the drug sensitivity, 5 ×  104/mL to 2 ×  105/mL 
viable cells from each cell line were seeded into a well of 
96-well white plate (SPL, #30,196) in triplicate. One day 
later, all cell lines and organoids were treated with appro-
priate drug concentrations After 72 h of incubation at 
37 °C, 10 µL of Cell-titer Glo solution was added to each 
well. Following a 20-min incubation at 37 °C, the lumi-
nescence was measured using the Multiskan™ Ascent 
Microplate Luminometer (Thermo Fisher Scientific). This 
procedure was repeated in duplicate. Drug sensitivity was 
assessed using the Area Under the Curve (AUC) method.

Drug sensitivity analysis using three‑dimension (3D) 
organoids models
Organoids were placed around the rim of the well of 96 
well white plates (SPL, #30,196) in a 1:1 mixture of HBEC 
medium and RGF basement membrane matrix (Gibco, 
A14132-02). Plates were incubated at 37 ℃ with 5% CO2 
for 15 min to solidify the gel. After solidification, 20 µL 
of pre-warmed HBEC medium was added to each well. 
After 96 h, 20 µL of serially diluted drug solutions were 
added to each well, with the control wells receiving a 
mixture of HBEC medium and drug solvent solution. 
Following a 20-min incubation at 37 °C, the lumines-
cence was measured again using the Multiskan™ Ascent 
Microplate Luminometer. This procedure was repeated 
in duplicate. Drug sensitivities were presented as AUC 
with six dilution points, using drugs mostly selected from 
the NIH breast cancer medical supplies list (https:// www. 
cancer. gov/ about- cancer/ treat ment/ drugs/ breast) along 
with a few recently identified anti-cancer compounds.

Confocal analysis of immunofluorescence staining
Cells were seeded on chambered cover glass (Thermo 
Fisher Scientific) to achieve desirable confluence. Sev-
enty-two hours after seeding, cells were fixed and 

https://www.cancer.gov/about-cancer/treatment/drugs/breast
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permeabilized using BD Cytofix/Cytoperm™ (BD science, 
CA, USA). After washing with BD washing solution, 
cells were blocked with DPBS containing 2% FBS (GE 
Healthcare Life Sciences, Buckinghamshire, UK) for an 
hour. Following a cold DPBS wash, cells were incubated 
with HER2 (Santa Cruz Biotechnology, CA, USA) and 
E-cadherin antibodies (Abcam, Cambridge, UK) diluted 
to 0.05% in PBS-T for 1.5 h at room temperature. Cells 
were then washed with 0.05% PBS-T and incubated with 
Alexa 488 and Alexa 594 secondary antibodies (Thermo 
Fisher Scientific) diluted in 0.05% PBS-T for an hour at 
room temperature. After staining with 1 × DAPI (Sigma-
Aldrich, MO, USA) diluted in distilled water for 30 min 
at room temperature, cells were washed three times with 
DPBS and imaged using a confocal microscope.

Histopathologic analysis
Tumor tissues were fixed in 10% neutral buffered forma-
lin, embedded in paraffin, and sectioned at 4  µm thick-
ness. For organoids, the BME dome was mechanically 
scraped with a pipette tip. Cold PBS (10 mL) was added 
to collect the dissociated BME domes, which were trans-
ferred to a 15 mL conical tube. After centrifuging for 15 
s at 100 rpm, the supernatant was aspirated. This proce-
dure was repeated until the BME gel was visibly removed, 
taking care not to damage the original structure of the 
organoids. Collected organoids were embedded in 2% 
agarose gel (INTRON Biotechnology, Seongnam, Repub-
lic of Korea). The solidified agarose gel was fixed in 10% 
formalin for 30 min at room temperature and sectioned 
at 4  µm thickness. The sections were then subjected to 
H&E staining.

Whole Exome Sequencing of cell lines
Total DNA was isolated from the cell line and organoid 
pellets using QIAamp DNA Mini Kit (Qiagen, Hilden, 
Germany) according to the manufacturer’s protocol. 
For cell lines, SureSelect sequencing libraries were pre-
pared following the manufacturer’s instructions (Agi-
lent SureSelectXT Human All Exon V4) using The Bravo 
automated liquid handler. The captured targets were 
sequenced using Illumina Novaseq 6000 system (Illu-
mina, San Diego, CA, USA) with the pair-end 100 bp 
read option. For organoids, whole-exome capture was 
performed with the SureSelect Human All Exon V5 Kit 
(Agilent Technologies, Tokyo, Japan). Captured targets 
were sequenced using HiSeq 2500 (Illumina) with the 
pair-end 100 bp read option for organoid samples.

The sequence data from cell lines and organoids were 
processed through an in-house pipeline. Briefly, paired-
end sequences were aligned to the human reference 
genome (UCSC assembly hg19—original GRCh37 from 
NCBI, 2009) using the mapping program BWA (version 

0.7.12) [17], and generated a mapping result file in BAM 
format using BWA-MEM. PCR duplicates were removed 
using MarkDuplicates.jar included in Picard tools (v. 
1.130, https:// broad insti tute. github. io/ picard/). The 
Genome Analysis Toolkit (GATK, v.3.4.0) [18] was used 
to performed base quality score recalibration (BQSR) 
and local realignment around indels. Haplotype Caller of 
GATK (GATKv3.4.0) was used for variant genotyping of 
each sample based on the BAM file previously generated 
(SNP and short indel candidates are detected).  Those 
variants are annotated by SnpEff v4.1 g, to vcf file format, 
annotating with dbSNP for the version of 142 and SNPs 
from the 1000 genome project. Then, SnpEff was applied 
to annotate additional databases, including ESP6500, 
ClinVar, dbNSFP 2.9.

Analysis of RNA sequencing
Total RNA was isolated from cell lysate using TRIzol 
(Qiagen) and Qiagen RNeasy Kit (Qiagen). Library was 
prepared with TruSeq Stranded mRNA LT Sample Prep 
Kit in accordance with TruSeq Stranded mRNA Sample 
Preparation Guide, Part #15,031,047 Rev. E. Paired-end 
sequencing reads (101 bp) from cDNA libraries were 
generated with an Illumina NovaSeq6000 instrument, 
and sequence quality was verified using FastQC v.0.11.7 
(https:// www. bioin forma tics. babra ham. ac. uk/ proje cts/ 
fastqc/). For data preprocessing, low quality bases and 
adapter sequences were trimmed using Trimmomatic v 
0.38 [19]. The trimmed reads were aligned to the human 
genome (UCSC hg19) using HISAT v2.1.0, a splice-aware 
aligner [20]. Then, transcripts including novel splice vari-
ants were assembled with StringTie v1.3.4 d [21]. The 
abundance of these transcripts in each sample was cal-
culated as read counts or TPM (Transcript per Million 
mapped reads) values.

Statistical analysis
Statistical analysis was performed using R program ver-
sion 3.3.1 (R Foundation for Statistical Computing, 
Vienna, Austria) with packages including maftools, Per-
formanceAnalytics, survminer, survival, iplot, gplot, and 
lattice. Fisher’s exact test was used to analyze GO analy-
sis of various genes. A multivariate analysis of variance 
(MANOVA) model was applied to the drug response 
data matrix, considering factors such as the mutational 
status and the three different transcriptional subtypes. 
Approximate F value, p-value and Pillai’s trace score were 
obtained for each of the factors/drug pairs. A value of 
p < 0.05 was considered statistically significant. For hier-
archical cluster analysis on a set of dissimilarities, each 
object was assigned to its own cluster, which an algo-
rithm proceeds through iteratively. Two of the most simi-
lar clusters are joined at each stage until there is a single 

https://broadinstitute.github.io/picard/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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cluster. Distances between clusters are recomputed at 
each stage by the Lance–Williams dissimilarity update 
formula according to the particular clustering method 
used. Clustering methods include Ward’s minimum 
variance method, complete linkage method, k-means 
method, and single linkage method.

Results
Breast cancer in vitro models retained heterogeneous 
morphological features of the primary tissue
We have established 24 breast tumor lines in which 
twenty from the MPE, one from the ascites, and three 
cell lines were accrued from PDX models of patients 
who had scant numbers of malignant cells in the body 
fluids. For a better readability, multiple cell lines estab-
lished from a same patient were categorized with patient 
numbers as follows: Multiple set 1 (SNU-3223, SNU-
3224, SNU-3230), Multiple set 2 (SNU-3380, SNU-3393), 
Multiple set 3 (SNU-3698 A, SNU-3698B, SNU-3698 C, 
SNU-3705, SNU-3716, SNU-3730) and Multiple set 4 
(SNU-5188, SNU-5226B). Detailed clinicopathological 
characteristics of 15 enrolled patients in this study were 
summarized in Table  1 and Table  S1. DNA fingerprint-
ing analysis showed a heterogeneous distribution of 
15 tetranucleotide repeat loci and an amelogenin gen-
der (Table S2). All models were confirmed to be free of 
mycoplasma contamination (Fig. S1).

The morphologies of the established cell lines were 
mainly classified into four types: polygonal, oval, round 
and fibroblast-like (Fig.  1A, Table  1). Cell lines mostly 
exhibited adherent patterns despite of their pleural effu-
sion origin, which implied that breast cancer cells in the 
pleural cavity retained the characteristics of anchorage-
dependent growth. Interestingly, different growth pat-
terns were observed in cell lines derived from the same 
patients. For instance, in Multiple set 3, SNU-3716 cell 
lines mostly grew as both adherent and floating aggre-
gates whereas SNU-3730 cell line exhibited predomi-
nantly adherent patterns in similar numbers of passages. 
Although in vitro culture conditions might shape the cel-
lular population differently, these cell lines partially dem-
onstrated that the growth patterns may vary within the 
MPE microenvironment (Fig. 1A).

Tumor cells harvested from three patients (SNU-4842, 
SNU-4856 and SNU-5126) were initially used to estab-
lish PDX models subjected to further organoid culture. 
They showed mostly spheroidal and asymmetric mor-
phologies and matched cell lines grew as monolayers of 
substrate-adherent cells displaying polygonal and spindle 
shapes (Fig. 1B). H&E staining of paraffin sections from 
the tumor organoids (TO) indicated that SNU-4856-TO 
was loosely aggregated compared to two other compact 
organoids. Immunocytochemistry (ICC) demonstrated 

that SNU-4842-TO had clear expressions of HER2, in 
line with the histopathological diagnosis of the patient 
(Fig. 1C, Table 1). As shown in Fig. 1C, organoids derived 
from HER2-positive patients, such as SNU-4842, exhib-
ited clear HER2 expression, whereas organoids derived 
from HER2-negative patients, including SNU-4856 and 
SNU-5126, did not show HER2 staining, reflecting the 
immunohistochemical profiles of the original tumors. 
These suggests that organoids established from MPE via 
PDX model still retained the characteristics of MPE.

Multiple sampling and modeling of breast tumor cells 
within pleural cavity revealed intratumoral heterogeneity 
population
We performed whole exome sequencing (WES) to esti-
mate the variant allele frequencies (VAFs) of driver muta-
tions. The mutational profiling of the breast tumors was 
focused on 700 driver genes documented in Cancer Gene 
Census [22] and ClinVar database [23] in order to vali-
date the pathogenicity of selected mutations. All marked 
mutations in the Fig. S2 are either pathogenic or con-
flicting interpretations of pathogenicity in the ClinVar 
database. (Fig. S2 A, Table S3 A, B). The mutational land-
scape indicated that TP53 and APOB exhibited the high-
est mutation frequencies at 56% and 52%, respectively. 
Multiple sample sets overall showed similar mutational 
pattern.

Cell lines originating from the same patient mostly 
shared overall landscapes of the mutational features. 
To trace the heterogeneity of breast cancer cells evad-
ing into the pleural cavity, we assessed the continu-
ously altering VAFs. For instance, the tumor cells 
from the Multiple set 1 (SNU-3223, SNU-3224, and 
SNU-3230) were serially harvested within a week. 
The patient received lapatinib and capecitabine before 
collecting cancer cells from MPE when patients were 
progressed after lapatinib and capecitabine (Fig.  2A). 
Although the estimated number of subclones within 
the pleural cavity did not vary, the proportion of 
subclones was different with elevated VAFs of IRF6, 
SPTA1, FLT3, and ATRX genes (Table  S4 A). On the 
other hands, the Multiple set 2 (SNU-3380 and SNU-
3393) were collected after progression from pan-HER 
inhibitor posiotinib showed that both the composition 
and proportion of the subclones within the pleural cav-
ity remained largely unchanged (Fig.  2B, Table  S4B). 
The Multiple set 3 represented spatiotemporal heter-
ogeneity as three samples (SNU-3698 A, SNU-3698B, 
and SNU-3698 C) were harvested on the same day 
(after progression from T-DM1) yet cultured sepa-
rately, and the rest (SNU-3705, SNU-3716, and SNU-
3730) were collected during 3rd line trastuzumab with 
vinorelbine at a short interval of days. The spatially 
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heterogeneous samples (SNU-3698 A, SNU-3698B, 
and SNU-3698 C) exhibited two different clonal com-
positions which were maintained throughout subse-
quent harvest (Fig. 2C, Fig. S2B, Fig. S2 C and Table S4 
C). For instance, SNU-3716 which was collected 9 days 
after the drainage of SNU-3698 series showed similar 

composition comparable to SNU-3698 C. In contrast, 
SNU-3730, which was harvested 31 days after the col-
lection of SNU-3698, exhibited analogous constitution 
of SNU-3698 A and SNU-3698B.

Fig. 1 The morphologies of MPE‑derived human breast cancer In Vitro models exhibited heterogeneous patterns. A Majority of cell lines grow 
as adherent form, suggesting cells floating in the pleural cavity maintained the capability to adhere. Various growth patterns include polygonal (n = 
8), fibroblast‑like (n = 1), round (n = 9), oval (n = 1) and mixed (n = 5) form. The names of cell lines are indicated upper‑left corner. Multiply collected 
samples from the same patient are indicated with black squares. Scale bar = 200 μm. B Bright field images of three PDX‑derived organoids displayed 
mostly spheroidal and asymmetric morphologies. Scale bar = 100 μm. C Immunocytochemistry of PDX‑derived organoids and hematoxylin–eosin 
(H&E) staining of paraffin sections demonstrated organoids maintained the characteristics of the original breast tumor. Scale bar = 20 μm
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Transcriptomic analysis revealed patient‑specific 
expressional patterns
We further investigated if the changing microenvi-
ronment of MPE was associated with transcriptomic 
alteration. We first analyzed the overall mRNA expres-
sion pattern using principal component analysis (PCA), 
which revealed a high level of intertumoral heterogeneity 
(Fig.  3A). Two transcriptomic subtypes 1 and 4 entirely 
represented Multiple sets 3 and 1, displaying patient-
specific expression patterns. Although transcriptomic 
Clusters 2 and 3 displayed a high degree of dispersion in 
PCA, we conducted sub-clustering within these groups. 
While smaller sub-clusters were identified, the lim-
ited number of samples in each precluded statistically 
robust pathway enrichment analysis. These limitations 
underscore the need for cautious interpretation of inter-
patient differences in gene expression patterns. We then 
estimated which signaling pathways were involved with 
each subtype from the PCA (Fig. 3B). Overall, signaling 
by interleukins and axon guidance pathways were largely 
modified in subtypes 1, 2, and 4. Subtype 1 (Multiple set 
3) had aberrations in an increased number of pathways 
compared to other groups including signaling to RAS, 
FGFR1, VEGF and ERBB4. Subtype 2 had distinctive 
pathway aberration related to DNA replication including 
S Phase, DNA strand elongation, and leading strand syn-
thesis pathways. The adjusted p-values with overlapped 
genes for each pathway were summarized in Table  S5. 
Both PCA and pathway analysis designated that subtype 
1 (Multiple set 3) had a distinct pattern of expressional 
aberrations. Then, we inspected the loading components 
(genes) that accounted for the transcriptomic variations 
of the Multiple set 3 (Fig.  3C). The PC1 contributed to 
46.51% of total variations, and separated SNU-3698 C 
from SNU-3698 A and SNU-3698B, which indicated that 
loading components consisting of PC1 were responsible 
to spatially varying expression patterns. On the other 
hands, the PC2 accounting for 22.97% of entire varia-
tions divided SNU-3705 from SNU-3730 and SNU-3716, 
which represented the temporal heterogeneity. The entire 
composition of loading components is summarized in 
Table S6. We further estimated pathways that were spe-
cifically altered in accordance with multiple sampling 
by using top 10% of PC2 loading components. This 

revealed several tumor-related pathways including HIF-1, 
ErbB and MAPK signaling pathways (Fig. 3D, Table S7). 
Finally, we calculated the normalized enrichment scores 
(NES) for each multiple set using gene set enrichment 
analysis (GSEA) in order to estimate overall tempo-
ral transcriptomic changes of MPE samples (Fig.  3E, 
Table S8). The result suggested that most hallmark path-
ways were altered in patient-specific manners. The Multi-
ple sets 2 and 4 underwent relatively radical expressional 
changes compared to sets 1 and 3. Notably, MYC_TAR-
GETS_V2 signaling was significantly shifted in all sets 
except for set 2, which partially validated genes con-
sisting of the MYC pathway were involved in subclonal 
selection in MPE. Multiple set 2 exhibited more pathway 
aberrations compared to other sets. We confirmed that 
epithelial-mesenchymal transition (EMT) and hedge-
hog signaling pathways were significantly dysregulated 
in set 2 (Fig. 3F). Overall, we confirmed that our cell line 
models of multiple sets recapitulated heterogeneous fea-
tures of breast cancer. While notable differences were 
observed between patients, these findings are descriptive 
and should be interpreted in the context of each patient’s 
unique clinical background, including treatment history 
and disease stage.

Molecular diversity caused by tumor heterogeneity affects 
drug responses
We integrated the actively shifting molecular fea-
tures of the MPE microenvironment with variable drug 
responses. Twenty-three cancer cell lines and three 
organoids were successfully screened using a clinically-
relevant 25 compounds library in biological triplicates 
generating more than 2,000 drug interactions. The 
detailed information of drug library and screening results 
are summarized in Table S9 and Methods section.

Both cell lines and drugs were grouped into 4 tran-
scriptomic clusters resulting in 16 cell lines-drugs asso-
ciations (Fig.  4A). This classification revealed a group 
of drugs such as lapatinib, erlotinib, elimusertib, and 
afatinib showed different sensitivity in cell lines with 
different molecular features. It also demonstrated a few 
TNBC cell lines such as SNU-2924, SNU-3129, and SNU-
3196 exhibited high level of resistance to most screened 
drugs, in parallel with prior findings [24]. To statistically 

Fig. 2 Intratumoral heterogeneity within malignant pleural effusions of breast cancer patients. A‑C Clonal estimation of the multiple set 1–3. 
Calculated subclones and their proportions among a tumor population within the MPE are indicated with colored circles and fish plots using 
representative colors. The number of colored circles per each harvesting point is set to 100. The time intervals for collecting tumor cells and applied 
antitumor drugs are indicated below the fish plot. The VAFs of mutational clusters per multiple collected samples are indicated with a broken 
line graphs with representative colors. The clone numbers corresponding to the line graphs in Fig. 2 are provided on the right side of each graph, 
and the associated gene mutations with significantly changed VAFs are detailed in Table S4 A–4 C. The subclones of multiple set 4 could not be 
estimated with identical parameters and omitted from the clonal analysis. See also Table S3 A‑3 C and S4 A‑4 C

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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evaluate the effect of such factors to each drug, we per-
formed MANOVA. The transcriptomic cluster factor had 
a significant association with responses of drugs such as 
cisplatin (p < 0.001) and fulvestrant (p < 0.001) (Fig.  4A, 
Table S10 A). Since the cell lines within the Multiple sets 
represented the characteristics of a single patient, drugs 
that showed analogous responses within the Multiple 
sets were excluded from the analysis to avoid unwanted 
statistical weight. Then we further estimated mutation-
drug interaction using Wilcox ranked sum test. We only 
counted the previously identified pathogenic mutations 
including PIK3CA and TP53 (Fig.  4B, Table  S10B and 
Table S10 C).

We traced the mutational evolution of temporal sam-
ples to explore how mutational diversity relates to varying 
drug responses. Phylogenetic analysis revealed that SNU-
3223 evolved around mutations in the APOP and TRAF3 
genes (Fig. 4C). Notably, both SNU-3224 and SNU-3230 
harbored mutations in TRAF3, a gene associated with 
doxorubicin sensitivity [25]. Our Multiple Set models 
effectively recapitulated this specific gene–drug inter-
action (indicated with triangles). Similarly, only SNU-
3230 carried a mutation in the AR gene, which is known 
to influence responses to lapatinib [26] and afatinib 
[27]. Consistent with prior findings, the AR mutation 
impacted the lapatinib response (indicated with stars in 
Fig.  4B). In addition to acquired mutations, changes in 
cellular fractions also contributed to substantial variabil-
ity in drug responses (Fig. 4E). For instance, the variant 
allele frequencies (VAFs) of mutational clusters 5 and 9 
showed strong correlations with the responses to gemcit-
abine and fluorouracil, respectively.

Finally, we linearly interlinked the variable drug 
responses with molecular diversities contributing to 

intratumoral heterogeneity of breast cancer. We manu-
ally screened drugs that exhibited significant variations 
in the multiple samples comprising irinotecan, everoli-
mus, gefitinib, docetaxel, 5-FU, lapatinib, gemcitabine 
and paclitaxel. Those drugs were considered as potential 
targets that responded variably in accordance with previ-
ously described alteration of tumor cell fractions in MPE. 
Then, we performed Pearson correlation test in order 
to validate which molecular factors were linearly corre-
lated to variable drug responses. This approach revealed 
six drugs (everolimus, gefitinib, paclitaxel, irinotecan, 
gemcitabine, and 5-FU) had significant correlation with 
determinant molecular factors (Fig.  4F, Table  S11). For 
instance, the sensitivity of gemcitabine was inversely 
related to VAFs of ZFHX3 (c.2330 TC/p.Val777 Ala). Pre-
vious study reported that ZFHX3 is involved with pro-
liferation of breast cancer cells by enhancing MYC and 
TBX3 transcription [28], which was well recapitulated in 
our data. Also, our result demonstrated that the response 
of gefitinib was directly connected to enrichment scores 
of glycolysis pathway. Prior research reported that 
GPR119 agonists such as MBX-2982 caused a metabolic 
shift to enhanced glycolysis accompanied by reduced 
mitochondrial oxidative phosphorylation, which resulted 
in better gefitinib responsiveness [29].

Discussion
Tumor recurrence and metastasis following therapy are 
one of the most challenging difficulties in treatment of 
breast cancer, yet the changing clonal composition of 
breast tumor during relapse and metastasis remains 
uncertain [30]. Especially, breast cancer patients with 
MPE have a poor prognosis since tumor cells in MPE 
cause unpredictable resistance to chemotherapy and 

(See figure on next page.)
Fig. 3 Multiple sets of MPE‑derived breast tumor cell lines revealed patient‑specific transcriptomic alteration. A Principle component analysis 
(PCA) showed high level of inter‑patient heterogeneity. A total of 4 transcriptomic subtypes are identified with PCA. Each subtype is indicated 
with connected lines and representative colors. B See also Table S5. Multivariate pathway enrichment analysis identifies gene sets that are 
over‑represented across transcriptomic subtypes. Four transcriptomic subtypes identified from PCA are used to estimate pathway aberrations, 
each indicated by a representative color. Pathways associated with all four subtypes are labeled as “Combined.” The size of each circle corresponds 
to the pathway term size, representing the number of genes in each pathway. Only pathways with statistically significant enrichment (adjusted 
p < 0.05) are shown. The filled colors within each circle represent the transcriptomic subtypes contributing to the enrichment of each pathway. 
C See also Table S6. PCA of Multiple set 3 validates spatiotemporal heterogeneity of MPE‑derived breast tumor cell. The principle component 
1 (PC1) separates spatially heterogeneous samples with 46.51% of total variation, whereas the principle component 2 (PC2) divides temporally 
heterogeneous samples with 22.97% of total variation (n = 27,681). Top 0.1% component loadings of PC1 and PC2 were indicated on the top 
and right side of the PCA plot respectively. D See also Table S7. Pathway enrichment analysis of loading components that account for temporal 
heterogeneity. The log‑transformed p‑values are indicated with gradient colors. A value of p <.05 is considered statistically significant. The size 
of the circle is proportional to the sample size. The fold enrichment is indicated on the x‑axis, and the names of enriched pathways are indicated 
on the y‑axis. E Table S8. Normalized enrichment scores (NES) for each Multiple set using single sample gene set enrichment analysis (ssGSEA) 
display overall temporal transcriptomic changes of MPE samples. Pathways with standard deviation > 0.5 of NES were highlighted with black 
squares. F EMT and hedgehog signaling pathways are distinctively expressed in the set 2. The statistical settings for GSEA analysis is as follows 
(Number of permutations = 1000, Permutation type = phenotype, Chip platform = MSigDB.v.7.4.chip, Enrichment statistic = weighted, Max size: 
exclude larger sets = 500, Min size: exclude smaller sets = 15)



Page 13 of 18Kim et al. Breast Cancer Research           (2025) 27:66  

Fig. 3 (See legend on previous page.)
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potentially invade into pleural membrane and adjacent 
organs [8, 9]. In order to access molecular heterogeneity 
within MPE, we established cell line models from mul-
tiply collected MPE samples with a time interval of few 
days and weeks, which were subjected to genomic, tran-
scriptomic and drug sensitivity analysis. The observed 
heterogeneous drug responses and clonal evolution in 
our MPE-derived cell lines align with reports of anoikis 
resistance, EMT activation, and immune evasion as 
key drivers of therapeutic failure in MPE-complicated 
malignancies. Additionally, the variability in response to 
taxanes and DNA-damaging agents across our models 
supports previous observations that MPE microenviron-
ments select for chemoresistant subclones with altered 
signaling pathways and stem-like features [31]. Our 
results extend these findings by providing a multi-omics 
perspective on how clonal dynamics and transcriptomic 
shifts correlate with drug sensitivity, emphasizing the 
potential of MPE-derived models as a platform for per-
sonalized drug screening and resistance prediction.

The different culture methods had a little influence on 
the mutational and expression profiles as the molecular 
patterns between cell lines and PDX-derived organoids 
(PDXO) were highly analogous (Fig. S2 and Fig.  3A). 
Nevertheless, PDXOs were grouped adjacent to each 
other within the same cluster, suggesting that the culture 
method affected responses to certain drugs including 
taxanes. For instance, the cell line, SNU-4842 exhibited 
moderate response to taxanes including paclitaxel and 
docetaxel, whereas the corresponding organoid, SNU-
4842-TO was highly sensitive to taxanes. This implies 
that there is an intrinsic limitation when comparing drug 
screening results from 2 and 3D cultures. The patient 
for SNU-4842 received doxorubicin and cyclophospha-
mide before sampling of the pleural effusion (Table  S1) 
and progressed with metastatic disease and received 

docetaxel with trastuzumab plus pertuzumab showing 
partial response. Between the two model systems, our 
results indicate that MPE-derived 2D cell cultures more 
faithfully reflected the clinical drug responses observed 
in patients, as exemplified by the SNU-2480 cell line, 
which demonstrated strong cisplatin resistance con-
sistent with the patient’s treatment history. In contrast, 
while PDXO retained key molecular characteristics, their 
drug response profiles—particularly to agents such as 
taxanes—were sometimes more variable, possibly due to 
selection pressures during in vivo PDX expansion. These 
findings suggest that MPE-derived 2D cultures may serve 
as more immediate and reliable models for assessing 
patient-specific drug sensitivity, particularly in the con-
text of cytotoxic chemotherapy.

Patients enrolled in this study received various pallia-
tive chemotherapies and pleural interventions before the 
establishment of the cell lines. Most of them received 
more than 1 or 2 lines of chemotherapies before sam-
pling, which partially explains the drug screening results 
(Table  S1). For instance, the patient for SNU-2480 was 
diagnosed with TNBC and was treated with neoadjuvant 
anthracycline and taxane containing therapy, but pro-
gressed with metastatic disease and received cisplatin 
containing regimen and capecitabine and the tumor pro-
gressed after several months of stable disease. In analo-
gous with clinical data, SNU-2480 cell line exhibited 
strong resistance to Cisplatin (Fig. 4A). This re-confirms 
the value of the MPE-derived breast tumor cell line in 
predicting drug responses.

Multiply collected tumor cells from the same 
patients were mostly positioned within the same clus-
ter in the drug heatmap, except for Multiple Set 4, 
which consisted of two cell lines: SNU-5188 collected 
before treatment with letrozole and palbociclib, and 
SNU-5226B collected after 2  weeks of treatment with 

Fig. 4 MPE‑derived breast tumor in-vitro models reveal heterogeneous drug responses caused by molecular diversity. A See also Table S10 A. 
A heatmap of MPE‑derived breast tumor in-vitro models exhibited heterogeneous distribution of 25 compounds according to their molecular 
characteristics. The names of compounds are provided on the right. The cell lines and drugs were k‑means clustered based on the AUC values 
across the drug panel. Multiple factors that potentially contribute to the heterogeneous drug responses are indicated above the heatmap. The 
normality of each drug response was estimated with Shapiro–Wilk test. The p‑values < 0.05 was considered as normally distributed data. B See 
also Table S10B, C. Gene‑drug interaction analysis using Wilcoxon ranked sum test. Each dot indicated a pair of gene and drug. The size of circle 
is proportional to pair count. The absolute log fold change of AUC value > 0.2 and p < 0.05 were considered as significant. C, D. Multiple cell 
lines reveal heterogeneous drug responses caused by mutational ITH. Shifting mutational landscape during temporal evolution was associated 
to heterogeneous drug responses (marked with plane figures). The Treeomics statistical settings were as follows (sequencing error rate = 0.005, prior 
absent probability = 0.5, max absent VAF = 0.05, LOH frequency = 0, false discovery rate = 0.05, false‑positive rate = 0.005, and absent classification 
minimum coverage = 100). E. Longitudinal tracking of mutational fraction revealed drug‑associated variant clusters. Each cluster was highlighted 
with representative colors. Mutational clusters related to varying drug responses were marked with colored dot on the top of the drug 
heatmap. F. See also Table S11. Correlation plot shows the statistical association of molecular factors contributing to subclonal cell fractions 
including the VAFs of representative mutations and NES of specific pathways to certain drugs. The Pearson correlation coefficient (R) with p‑values 
between the molecular factors and AUC of six drugs are represented. (Blue: positive correlation; Red: negative correlation). Significance codes: ‘***’ 
p < 0.001; ‘**’ p < 0.01; ‘*’ p < 0.05

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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letrozole and palbociclib (Fig. 4A). Although no hetero-
geneous cell population with respective of mutational 
VAFs was detected in the multiple set 4, the transcrip-
tomic enrichment scores of multiple oncogenic path-
ways including DNA_REPAIR, E2 F_TARGETS, and 
MYC_TARGETS_V2 were decreased in SNU-5226B 
compared to SNU-5188 (Fig. 3E), which suggested that 
the treatment of palbociclib may have altered the tumor 
cell fractions within MPE in terms of the transcrip-
tomic patterns. Indeed, prior clinical trials indicated 
that the E2F transcriptional pathway is associated with 
response to CDK4/6 inhibitors such as palbociclib [32].

While this study provides comprehensive genomic, 
transcriptomic, and drug sensitivity profiles of MPE-
derived breast cancer models, we recognize the impor-
tance of further molecular characterization to enhance 
the translational relevance of these models. In future 
work, we aim to integrate quantitative proteomic analy-
ses to complement the transcriptomic data and to elu-
cidate functional protein-level alterations associated 
with drug responses. Additionally, the development 
of in  vivo models incorporating immune components 
is being considered to explore immune-related signa-
tures and their impact on therapeutic sensitivity. These 
efforts will contribute to establishing a multi-omics 
framework for non-invasively obtained MPE-derived 
tumor cells and facilitate the identification of personal-
ized treatment strategies that are more closely aligned 
with clinical practice.

Overall, we have successfully established preclini-
cal in  vitro models using pleural effusion and dem-
onstrated that the clonal fractions of breast tumors 
within MPE represent intratumoral heterogeneity. 
While clonal dynamics within individual patients high-
light the adaptability of breast tumor cells in MPE, 
given the variability in clinical factors such as treat-
ment regimens and tumor stage, differences observed 
across patients should not be generalized. Further stud-
ies involving larger cohorts are needed to elucidate 
whether common patterns of tumor evolution in MPE 
exist across diverse clinical contexts. Both VAFs of cer-
tain driver mutations and transcriptomic analysis iden-
tified potential targets that were statistically associated 
with heterogeneous drug responses. Our data suggest 
that multi-omics analysis on MPE-derived breast tumor 
cell lines represent a noninvasive and viable biologi-
cal resource to provide molecular clue for determin-
ing chemotherapy regimen, taking both genetic and 
transcriptomic features into consideration. Our work 
emphasizes the importance of comprehensively char-
acterizing the molecular features of MPE-complicated 
tumor cells in order to overcome potential drug resist-
ance and metastasis associated with MPE.
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