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Abstract 

Background The tumor morphological complexity is closely associated with treatment response and prognosis 
in patients with breast cancer. However, conveniently quantifiable tumor morphological complexity methods are cur-
rently lacking.

Methods Women with breast cancer who underwent NAC and pretreatment MRI were retrospectively enrolled 
at four centers from May 2010 to April 2023. MRI-based fractal analysis was used to calculate fractal dimensions (FDs), 
quantifying tumor morphological complexity. Features associated with pCR were identified using multivariable logis-
tic regression analysis, upon which a nomogram model was developed, and assessed by the area under the receiver 
operating characteristic curve (AUC). Cox proportional hazards analysis was used to identify independent prognostic 
factors for disease-free survival (DFS) and overall survival (OS) and develop nomogram models.

Results A total of 1109 patients (median age, 49 years [IQR, 43-54 years]) were included. The training, external valida-
tion cohort 1, and cohort 2 included 435, 351, and 323 patients, respectively. HR status (odds ratio [OR], 0.234 [0.135, 
0.406]; P < 0.001), HER2 status (OR, 3.320 [1.923, 5.729]; P < 0.001), and Global FD (OR, 0.352 [0.261, 0.480]; P < 0.001) 
were independent predictors of pCR. The nomogram model for predicting pCR achieved AUCs of 0.80 (95% CI: 0.75, 
0.86) and 0.74 (95% CI: 0.68, 0.79) in the external validation cohorts. The nomogram model, which integrated global 
FD and clinicopathological variables can stratify prognosis into low-risk and high-risk groups (log-rank test, DFS: P = 
0.04; OS: P < 0.001).

Conclusions Global FD can quantify tumor morphological complexity and the model that combines global FD 
and clinicopathological variables showed good performance in predicting pCR to NAC and survival in patients 
with breast cancer.
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Introduction
Neoadjuvant chemotherapy (NAC) is the preferred 
treatment for locally advanced breast cancer, effectively 
reducing tumor size and raising the possibility of breast-
conserving surgery [1, 2]. Patients who achieved patho-
logical complete response (pCR) after NAC showed 
improved disease-free survival (DFS) and overall sur-
vival (OS) [3]. However, non-responders not only face 
increased economic burden but also potential drug side 
effects [4, 5]. Therefore, a reliable approach to predict 
pCR and prognosis is urgently required in patients with 
breast cancer for personalized treatment.

Tumor morphological complexity has been a manifes-
tation of heterogeneity in breast cancer [6, 7]. Patients 
with higher tumor sphericity and smaller volumes are 
more likely to achieve pCR [8–10]. A greater size and 
more irregular morphology of the tumor are linked to 
increased risks of metastasis and recurrence [11, 12]. 
Consequently, there is a close correlation between tumor 
morphological features and treatment response and 
prognosis [13, 14]. Despite the variety of features used to 
describe tumor morphology, many techniques essentially 
assess the same tumor characteristics, such as tumor 
size indicated by diameter and volume. However, mod-
els based on these traditional morphological features 
(e.g., sphericity and longest diameter) often show lim-
ited performance in predicting pCR to NAC, with area 
under the receiver operating characteristic curve (AUC) 
values ranging from 0.61 to 0.79 [9, 10]. This limitation 
may be due to the inability of traditional morphological 
features to fully capture the complexity and heterogene-
ity of tumor morphology. Additionally, these models lack 
external validation in large, multicenter studies, which 
limits their reliability in clinical decision-making. There-
fore, it is necessary to develop a quantitative parameter 
to more accurately quantify tumor morphological com-
plexity, which could be valuable in predicting pCR and 
survival outcomes.

Fractal analysis has demonstrated utility in quan-
tifying tumor morphological complexity by measur-
ing self-similarity across different spatial scales [15]. 
Higher fractal dimension (FD) values suggest greater 
complexity, which may be indicative of poorer treat-
ment outcomes and prognosis [16, 17]. Previous stud-
ies have quantitatively measured FD to distinguish 
between benign and malignant lesions in ultrasound, 
mammography, and MRI, with higher FD values more 
indicative of malignancy [18–21]. However, these stud-
ies primarily focused on 2D fractal analysis, which 
may not fully capture the morphological complexity of 
tumor. Dynamic contrast-enhanced (DCE-MRI) is rec-
ognized as one of the most sensitive imaging modalities 
for assessing the therapeutic response to NAC in breast 

cancer [22]. A preliminary study explored the poten-
tial of using fractal analysis of volumetric DCE-MRI 
pharmacokinetic parametric maps to predict pCR to 
NAC [23]. However, this study was limited by its single-
center design and small sample size, and the prognos-
tic value of fractal analysis remains unclear, requiring 
further validation. Additionally, current research lacks 
a clear delineation of the relationship between MRI-
based morphological features of breast cancer and FD 
values, as well as their comparative efficacy in predict-
ing pCR to NAC.

Thus, this study aimed to quantify tumor morpholog-
ical complexity using multi-dimensional fractal analysis 
based on pretreatment MRI and to analyze the relation-
ships between FDs and clinicopathologic variables, as 
well as between FDs and morphological features. Addi-
tionally, the study evaluated the predictive value of a 
model that combines FDs with clinicopathologic vari-
ables in predicting pCR to NAC and survival prognosis 
in patients with breast cancer.

Materials and methods
Study cohort
This multicenter retrospective study received approval 
from the institutional review boards of each partici-
pating center, and the requirement for patient written 
informed consent was waived. The study was conducted 
following the Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or Diagno-
sis (TRIPOD) guidelines [24]. A checklist is provided in 
Supplementary Table S1.

From May 2010 to April 2023, this study included 
female patients from three academic medical cent-
ers and one public dataset (I-SPY2 trial) [9]. Centers 
A and B served as the training cohort, while Center 
C and the I-SPY2 trial served as the two external 
validation cohorts. The inclusion criteria were: (a) 
biopsy-confirmed invasive breast cancer without dis-
tant metastasis, (b) MRI conducted before NAC, and 
(c) post-NAC pathological confirmation of pCR. The 
exclusion criteria involved: (a) inadequate MRI qual-
ity, the overall image quality was assessed by a radiolo-
gist (X.X.W., with 10 years of experience in breast MRI) 
using a 5-point Likert scale (1 = poor, 2 = subpar, 3 = 
moderate, 4 = good, 5 = excellent), with scores of 2 or 
below considered inadequate [25, 26]. (b) Lack of his-
topathologic data, (c) previous history of breast cancer, 
(d) external institution surgery or unassessed pCR, (e) 
incomplete clinical data (excluding uncollected charac-
teristics), and (f) lack of follow-up records for survival 
prognosis analysis in center A (Fig. 1A).



Page 3 of 15Huang et al. Breast Cancer Research           (2025) 27:86  

NAC regimens and histopathology analysis
All patients received an anthracyclines and/or taxanes-
based NAC regimen. For human epidermal growth factor 
receptor2 (HER2) positive patients, treatment included 
trastuzumab alone or in combination with pertuzumab.

In this study, pre-NAC core needle biopsies were con-
ducted, and immunohistochemistry determined estrogen 

receptor (ER), progesterone receptor (PR) status, HER2 
status, and Ki-67 index status for patients from centers 
A, B, and C. Tumors with ≥1% nuclear staining were 
defined as ER (+)/PR (+), while those with < 1% as ER 
(-)/PR (-) [27, 28]. HR positivity is defined as ER (+) and/
or PR (+). HER2 status was categorized as negative for 
0 or 1+ immunohistochemistry scores, and positive for 

Fig. 1 Patient inclusion and exclusion process for four center (A) and FD calculation flowchart (B). The training cohort was used to develop models 
to predict pCR to NAC, which was then validated across the two external cohorts. Patients from center A were also included for survival analysis. 
Four FDs (max FD, median FD, min FD, and mean FD) were calculated from 2D slices, while one 3D FD (global FD) was calculated from the entire 
tumor volume. Data from the I-SPY2 trial are publicly available on The Cancer Imaging Archive. NAC = neoadjuvant chemotherapy, FD = fractal 
dimension, pCR = pathologic complete response
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3+ scores. For 2+ scores, fluorescence in situ hybridiza-
tion (FISH) determined HER2 status; amplification signi-
fied HER2 (+), and lack thereof indicated HER2 (-) [29, 
30]. Additionally, a Ki-67 index threshold of 20% was set, 
where ≥ 20% denoted high expression and < 20% indi-
cated low expression [31].

The pCR was defined based on surgical pathology as 
the absence of residual invasive cancer, possibly with 
residual ductal carcinoma in  situ, and no lymph node 
invasion in the axillary lymph nodes (ypT0/is ypN0).

MRI procedure and image processing
All MRI examinations were performed with 1.5 T or 3.0 
T scanners. Detailed protocols are provided in Supple-
mentary Table S2.

To minimize variability in imaging protocols, B-spline 
interpolation was used to resample images to 1×1×1 
 mm3, and z-score normalization was used for image 
intensity standardization. The peak enhancement phase 
of dynamic contrast-enhanced MRI, selected based on 
the time-signal intensity curve, was used to delineate the 
regions of interest (ROI) for subsequent fractal analysis 
[32]. Initial semi-automatic tumor region segmentation 
was performed using the Dr. Wise platform (https:// 
keyan. deepw ise. com). Two radiologists (S.T., and L.L., 
with 6 and 10 years of experience in breast MRI, respec-
tively) then manually corrected the segmentation. If there 
were multiple lesions, only the largest one was consid-
ered [33].

Image analysis
FDs were calculated using the box-counting method in 
MATLAB (version, R2020a) [34], with the input being 
delineated ROI images, resulting in both 2D FDs and 
3D FD. Initially, post-segmentation images underwent 
binarization. Subsequently, boxes of incremental sizes 
covered tumor region on each slice or the entire tumor 
volume, recording the minimum needed for full cover-
age, with sizes increasing up to 45% of image dimensions 
[16, 35]. Finally, logarithmic transformation was applied 
to box sizes and corresponding quantities for linear 
regression via the least-squares method, as illustrated: 
logNL = k · logL+ b , where NL is the minimum count of 
boxes, each with side length L, needed to cover the ROI 
areas, and FD is the negative of k. It is noteworthy that 
the calculated FDs may vary depending on the spatial 
sparsity and morphological complexity of tumor struc-
tures. The codes for fractal dimension analysis are avail-
able in a GitHub repository (https:// github. com/ YaoHu 
ang11 23/ FD).

For each patient, four 2D FDs (max FD, median FD, 
min FD, and mean FD) and one 3D FD (global FD) were 

calculated (Fig.  1B). Meanwhile, 14 morphological fea-
tures describing tumor size and geometric shape were 
extracted [36]. Detailed descriptions of the FD calcula-
tions and morphological feature extractions can be found 
in the Supplementary materials.

Development of models for predicting pCR to NAC
To predict pCR to NAC, seven logistic regression mod-
els were developed. Five models were developed using 
individual FD parameters to compare the performance 
of different FD quantitative metrics in predicting pCR to 
NAC. A morphological model based on morphological 
features was constructed to evaluate its predictive per-
formance against FDs. To further improve model perfor-
mance, nomogram model-1 was developed by integrating 
FDs with clinicopathological variables, and nomogram 
model-2 was created by integrating morphological fea-
tures with clinicopathological variables for comparison 
with nomogram model-1.

Follow‑up data collection
For surveillance of recurrence and distant metastasis, 
patients underwent post-surgery follow-ups every six 
months with chest radiography and/or chest CT scans, 
along with annual bone scans and abdominal CT scans 
or ultrasounds. Follow-up was conducted in center A 
by two radiologists (S.T., and L.L., each with 6 and 10 
years of experience), who recorded DFS and OS from the 
surgery date (the time origin) to the first recurrence or 
death, respectively. Patients without recurrence or death 
were censored at their last follow-up date.

Statistical analysis
Statistical analysis was conducted using R (version 4.3.1) 
and Python (version 3.9.5). To assess the reproducibility 
of fractal analysis, images from 30 patients (15 patients 
with pCR and 15 patients with non-pCR) randomly 
selected were segmented twice by a radiologist at one-
month intervals and once by another radiologist. Bland-
Altman statistics was used to evaluate intra-observer 
consistency, and a mixed-effects model with random 
effects on intercept and slope was used for variance-com-
ponent analysis to assess the reproducibility of fractal 
analysis [37]. The intraclass correlation coefficient (ICC) 
was used to assess interobserver consistency, with an 
ICC > 0.75 indicating good consistency.

The χ2 test was used to compare differences in cate-
gorical variables between the pCR and non-pCR groups 
when cell frequencies were greater than or equal to 5, 
while Fisher exact test was applied when any cell fre-
quency was less than 5. The Kolmogorov-Smirnov test 
was used to assess the normal distribution of continu-
ous variables, and the Levene test was applied to assess 

https://keyan.deepwise.com
https://keyan.deepwise.com
https://github.com/YaoHuang1123/FD
https://github.com/YaoHuang1123/FD
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Table 1 The characteristics of patients in three cohorts

Unless otherwise indicated, numbers represent the count of patients, with percentages in parentheses

P values indicate the comparison of characteristics between the pCR and non-pCR groups across different cohorts

FD fractal dimension, HER2 human epidermal growth factor receptor2, HR hormone receptor, pCR pathologic complete response
* Data are medians, with IQRs in parentheses
‡ Mann–Whitney U test
†  t-test

⁑ χ2 test or fisher exact test

Characteristics Training cohort
(n = 435)

P Value External validation cohort 1 
(n = 351)

P Value External validation cohort 2 
(n = 323)

P Value

pCR
(n = 114)

Non‑pCR
(n = 321)

pCR
(n = 83)

Non‑pCR
(n = 268)

pCR
(n = 97)

Non‑pCR
(n = 226)

Age (years)* 51 (45–55) 50 (46–55) .58‡ 49 ± 8 47 ± 9 .11† 49 (41–56) 47 (40–56) .72‡

Age group

 ≤ 45 40 (35) 104 (32) 21 (25) 112 (42) 40 (41) 45 (41)

 > 45 74 (65) 217 (68) 62 (75) 156 (58) 57 (59) 134 (59)

Menopausal status .94⁑ .34⁑ .27⁑

 Premenopausal 70 (61) 194 (60) 50 (60) 179 (67) 51 (53) 140 (62)

 Postmenopausal 44 (39) 127 (40) 33 (40) 89 (33) 39 (40) 75 (33)

 Perimenopausal 0 (0) 0 (0) 0 (0) 0 (0) 7 (7) 11 (5)

HR status <.001⁑ <.001⁑ <.001⁑

 Negative 76 (67) 91 (28) 49 (59) 78 (29) 59 (61) 78 (35)

 Positive 38 (33) 230 (72) 34 (41) 190 (71) 38 (39) 148 (65)

HER2 status <.001⁑ <.001⁑ .02⁑

 Negative 45 (39) 224 (70) 45 (54) 206 (77) 66 (68) 183 (81)

 Positive 69 (61) 97 (30) 38 (46) 62 (23) 31 (32) 43 (19)

Ki-67 status .01⁑ <.001⁑

 Low (< 20%) 9 (8) 63 (20) 8 (10) 83 (31) 0 (0) 0 (0)

 High (≥ 20%) 105 (92) 258 (80) 75 (90) 185 (69) 0 (0) 0 (0)

 Not available 0 (0) 0 (0) 0 (0) 0 (0) 97 (100) 226 (100)

Clinical T stage .11⁑

 cT1 11 (9) 25 (8) 0 (0) 0 (0) 0 (0) 0 (0)

 cT2 61 (54) 136 (42) 0 (0) 0 (0) 0 (0) 0 (0)

 cT3 17 (15) 57 (18) 0 (0) 0 (0) 0 (0) 0 (0)

 cT4 25 (22) 103 (32) 0 (0) 0 (0) 0 (0) 0 (0)

 Not available 0 (0) 0 (0) 83 (100) 268 (100) 97 (100) 226 (100)

Clinical N stage 0.37⁑

 cN0 11 (10) 39 (12) 0 (0) 0 (0) 0 (0) 0 (0)

 cN1 45 (39) 103 (32) 0 (0) 0 (0) 0 (0) 0 (0)

 cN2 43 (38) 120 (38) 0 (0) 0 (0) 0 (0) 0 (0)

 cN3 15 (13) 59 (18) 0 (0) 0 (0) 0 (0) 0 (0)

 Not available 0 (0) 0 (0) 83 (100) 268 (100) 97 (100) 226 (100)

Molecular subtypes <.001⁑ <.001⁑ <.001⁑

 HR+/HER2- 11 (10) 165 (52) 19 (23) 153 (57) 22 (23) 115 (51)

 HR+/HER2+ 27 (23) 65 (20) 15 (18) 37 (14) 16 (17) 33 (15)

 HR-/HER2- 34 (30) 59 (18) 26 (31) 53 (20) 44 (45) 68 (30)

 HR-/HER2+ 42 (37) 32 (10) 23 (28) 25 (9) 15 (15) 10 (4)

FD

 Max FD 1.37 ± 0.21 1.46 ± 0.15 <.001‡ 1.34 ± 0.18 1.40 ± 0.17 .01‡ 1.51 ± 0.15 1.55 ± 0.14 .01‡

 Median FD 1.26 ± 0.20 1.34 ± 0.15 <.001‡ 1.20 ± 0.19 1.26 ± 0.18 .01‡ 1.42 ± 0.14 1.46 ± 0.14 .06‡

 Min FD 0.97 ± 0.18 1.02 ± 0.18 .01† 1.01 ± 0.20 0.99 ± 0.21 .796† 1.26 ± 0.17 1.28 ± 0.18 .12‡

 Mean FD 1.23 ± 0.19 1.31 ± 0.14 <.001‡ 1.19 ± 0.18 1.24 ± 0.17 .046‡ 1.41 ± 0.14 1.44 ± 0.14 .06‡

 Global FD 1.75 ± 0.31 2.00 ± 0.21 <.001‡ 1.77 ± 0.24 1.95 ± 0.22 <.001‡ 1.89 ± 0.20 2.02 ± 0.20 <.001†
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homogeneity. If the data met both normality and homo-
geneity of variance, group differences were compared 
using the t-test; otherwise, the Mann-Whitney U test was 
applied. Univariable and multivariable logistic regres-
sion analyses were performed to assess the association 
between features and pCR, and molecular subtypes 
were excluded from the multivariable logistic regres-
sion model because of their collinearity with both HR 
status and HER2 status. Independent predictors of pCR 
were used to create a nomogram model. Model perfor-
mance was assessed by AUC, and accuracy, sensitivity 

specificity, positive predictive value, and negative predic-
tive value were also calculated. AUCs of different models 
were compared using the Delong test. The Hosmer-Leme-
show test assessed the calibration of models, and decision 
curves were used to evaluate the benefit of models. The 
correlation coefficients were calculated using Spearman 
correlation analysis.

The survival analysis used Cox proportional hazards 
analysis to identify factors associated with survival out-
comes (DFS and OS) and develop nomogram models. 
Patients were divided into high and low-score groups 

Fig. 2 The Spearman correlation coefficient network diagrams (A-C) between FDs and clinicopathologic variables, and the Spearman correlation 
coefficient heat maps (D-F) between FDs and morphological features in the training cohort, external validation cohort 1, and external validation 
cohort 2, respectively. The global FD showed a negative correlation with HER2 status, sphericity, and surface area to volume ratio, while it 
was positively correlated with diameter and volume. FD = fractal dimension, HER2 = human epidermal growth factor receptor 2, HR = hormone 
receptor
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based on the median score of the nomogram model. Dif-
ferences in DFS and OS between these groups were com-
pared using Kaplan-Meier curves and the Log-rank test. 
Two-tailed P < 0.05 was deemed statistically significant.

Results
Baseline characteristics
In this study, 1318 patients were initially acquired from 
three academic medical centers and one public data-
set. Patients were excluded for inadequate MRI quality 
(n = 20), lack of histopathologic data (n = 34), previous 
history of breast cancer (n = 13), external institution 
surgery or unassessed pCR (n = 81), and incomplete 
clinical data (n = 61), resulting in 1109 patients being 
included in the study (Fig.  1A). For predicting pCR, 

the training cohort comprised 435 patients (center 
A [n = 413], center B [n = 22]; median age, 51 years 
[IQR, 46–55 years]). Two external validation cohorts 
consisted of 351 patients from center C (median age, 
48 years [IQR, 43–52 years]) and 323 patients from 
I-SPY2 (median age, 48 years [IQR, 40–56 years]).

In all cohorts, significant differences were observed in 
HR status, HER2 status, max FD, and global FD between 
pCR and non-pCR groups (all P < 0.05) (Table 1).

Reproducibility of fractal analysis
The FDs for both 3D and 2D fractal analysis showed good 
consistency, the Bland-Altman repeatability coefficients 
ranging from 0.11 to 0.19 (Supplementary Table S3 and 
Fig. S1). Variance-components analysis indicated that 

Table 2 Univariable and multivariable logistic regression analysis of characteristics associated with pCR in the training cohort

Data in parentheses are 95% CI. Molecular subtypes were excluded from the multivariable logistic regression model because of their collinearity with both HR status 
and HER2 status

CI confidence interval, FD fractal dimension, HER2= human epidermal growth factor receptor2, HR hormone receptor, pCR pathologic complete response

Characteristics Univariable P Value Multivariable P Value
Odds Ratio (95% CI) Odds Ratio (95% CI)

Age 0.896 (0.725, 1.108) 0.312

Menopausal status

 Premenopausal Reference

 Postmenopausal 0.960 (0.619, 1.489) 0.856

HR status

 Negative Reference

 Positive 0.197 (0.125, 0.313) < 0.001 0.234 (0.135, 0.406) < 0.001

HER2 status

 Negative Reference

 Positive 3.541 (2.270, 5.524) <0.001 3.320 (1.923, 5.729) < 0.001

Ki-67 status

 Low Reference

 High 2.849 (1.367, 5.937) 0.005 2.023 (0.785, 5.214) 0.145

Clinical T stage

 cT1 Reference

 cT2 1.222 (0.734, 2.036) 0.441 0.903 (0.331, 2.468) 0.843

 cT3 0.812 (0.450, 1.463) 0.488 0.718 (0.220, 2.335) 0.581

 cT4 0.595 (0.360, 0.982) 0.042 0.497 (0.161, 1.527) 0.222

Clinical N stage

 cN0 Reference

 cN1 1.380 (0.887, 2.149) 0.154

 cN2 1.014 (0.653, 1.577) 0.949

 cN3 0.673 (0.365, 1.241) 0.204

Molecular subtypes

 HR+/HER2- Reference

 HR+/HER2+ 1.222 (0.734, 2.036) 0.441

 HR-/HER2- 1.887 (1.155, 3.083) 0.011

 HR-/HER2+ 5.268 (3.109, 8.927) < 0.001

FD

 Global FD 0.340 (0.256, 0.451) < 0.001 0.352 (0.261, 0.480) < 0.001
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the variance between patients (variance:0.0172–0.0195) 
exceeded the variance between readings (variance: 
0.0001–0.0009) for both 3D and 2D fractal analyses. The 
coefficient of variation (COV) for 2D FDs (COV: 3.21–
6.78) between readings was found to be higher than that 
for 3D (COV: 2.65), whereas the coefficient of variation 
for 2D FDs (COV: 377.94–467.28) between patients was 
lower compared to 3D (486.94). Furthermore, five FDs 
showed good inter-observer consistency (ICC: 0.87–0.93) 
(Supplementary Table S4).

Correlation analysis
Spearman correlation analysis indicated that global FD 
strongly positively correlated with max, median, and 
mean FD (correlation coefficient [r]: 0.69 to 0.81, P < 
0.05), and negatively with HER2 status (r: −0.12 to −0.01, 
P ≤ 0.04). Global FD showed negative correlations with 

sphericity and surface area to volume ratio (r: −0.65 to 
−0.18, P ≤ 0.04), and positively with diameter and vol-
ume (r: 0.54 to 0.68, P ≤ 0.04) (Fig.  2, Supplementary 
Table S5 and S6).

Variables associated with pCR
Univariable logistic regression analysis showed that HR 
status, HER2 status, Ki-67 status, Clinical T stage, and 
global FD were associated with pCR. After adjustment of 
the multivariable model for variables with P < 0.05 in the 
univariable analysis, HR status (odds ratio [OR], 0.234 
[95% CI: 0.135, 0.406]; P < 0.001), HER2 status (OR, 3.320 
[95% CI: 1.923, 5.729]; P < 0.001), and global FD (OR, 
0.352 [95% CI: 0.261, 0.480]; P < 0.001) were independent 
predictors for pCR (Table 2). These independent predic-
tors were then used to develop the nomogram model-1. 
Following the same process, clinicopathological variables 

Fig. 3 The receiver operating characteristic curves (A-C), calibration curve (D-F) and decision curves (G-I) of different models in the training cohort, 
external validation cohort 1, and external validation cohort 2, respectively. The morphological model incorporates sphericity, major axis length 
and maximum 2D diameter (row). The nomogram model-1 integrates hormone receptor, human epidermal growth factor receptor-2, and global 
FD. The nomogram model-2 integrates hormone receptor, human epidermal growth factor receptor-2, sphericity, major axis length and maximum 
2D diameter (row). The nomogram model-1 showed the best performance in predicting pCR to NAC. AUC = area under the receiver operating 
characteristic curve, CI = confidence interval, FD = fractal dimension
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Table 3 Performances of different models for predicting pCR to NAC in three cohorts

Nomogram model-1: combining hormone receptor, human epidermal growth factor receptor-2 and global FD

Nomogram model-2: combining hormone receptor, human epidermal growth factor receptor-2, sphericity, major axis length and maximum 2D diameter (row)

AUC  area under the receiver operating characteristic curve, ACC  accuracy, CI confidence interval, SEN sensitivity, SPE specificity, PPV positive predictive value, NPV 
negative predictive value, TC training cohort, EVC-1 external validation cohort 1, EVC-2 external validation cohort 2

Cohorts Models AUC (95% CI) ACC (%) SEN (%) SPE (%) PPV (%) NPV (%)

TC Global FD 0.75 (0.70, 0.80) 70.1 73.7 68.8 45.7 88.0

Morphological model 0.61 (0.55, 0.67) 58.2 63.2 56.4 34.0 81.2

Nomogram model-1 0.83 (0.78, 0.87) 80.5 71.1 83.8 60.9 89.1

Nomogram model-2 0.78 (0.73, 0.82) 66.9 82.5 61.4 43.1 90.8

EVC-1 Global FD 0.73 (0.67, 0.79) 67.2 79.5 63.4 40.2 90.9

Morphological model 0.61 (0.54, 0.67) 63.0 60.2 63.8 34.0 83.8

Nomogram model-1 0.80 (0.75, 0.86) 78.3 67.5 81.7 53.3 89.0

Nomogram model-2 0.74 (0.68, 0.80) 70.7 71.1 70.5 42.8 88.7

EVC-2 Global FD 0.68 (0.61, 0.74) 65.6 53.6 70.8 44.1 78.0

Morphological model 0.55 (0.49, 0.62) 52.9 60.8 49.6 34.1 74.7

Nomogram model-1 0.74 (0.68, 0.79) 72.4 38.1 87.2 56.1 76.7

Nomogram model-2 0.69 (0.62, 0.74) 66.9 64.9 67.7 46.3 81.8

Fig. 4 A nomogram model incorporating hormone receptor, human epidermal growth factor receptor-2 and global FD for predicting pCR to NAC. 
The nomogram model indicated that patients with HR-negative, HER2-positive status and lower global FD values are more likely to achieve 
pCR after NAC. FD = fractal dimension, HER2 = human epidermal growth factor receptor2, HR = hormone receptor, pCR = pathologic complete 
response
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(HR and HER2 status) and morphological features (sphe-
ricity, major axis length, and maximum 2D diameter 
[row]) were identified to develop the nomogram model-2 
(Supplementary Table S7).

Performance of models for prediction of pCR
For predicting pCR to NAC, the AUCs ranging from 
0.52 to 0.73 were observed for five FD univariable mod-
els across two external validation cohorts (Supplemen-
tary Fig. S2). Global FD achieved AUCs of 0.73 (95% CI: 
0.67, 0.79) and 0.68 (95% CI: 0.61, 0.74), significantly 
outperforming morphological models with AUCs of 
0.61 (95% CI: 0.54, 0.64) and 0.55 (95% CI: 0.49, 0.62) in 
the two external validation cohorts (Delong test, all P < 
0.001), respectively (Fig.  3A-C, Table  3, Supplementary 
Table S8).

The nomogram model-1 achieved AUCs of 0.80 (95% 
CI: 0.75, 0.86) and 0.74 (95% CI: 0.68, 0.79) (Figs. 3A-C 
and  4), significantly outperforming nomogram model-2 
with AUCs of 0.74 (95% CI: 0.68, 0.80) and 0.69 (95% CI: 
0.62, 0.74) in two external validation cohorts, respectively 
(Delong test, P < 0.001) (Supplementary Table S8).

The calibration between predicted and observed 
probabilities was good for nomogram model-1 (Hos-
mer-Lemeshow test, P: 0.35–0.78) (Fig. 3D-F). Decision 
curve analysis showed that nomogram model-1 offered 
greater clinical benefit across most threshold ranges 
and demonstrated net benefits in two external valida-
tion cohorts at thresholds of 0.07 to 0.68 and 0.13 to 
0.66 (Fig. 3G-I).

Model performance for prediction of pCR in patient 
subgroups
Four subgroup analyses were conducted based on 
molecular subtypes, age, menopausal status, and Ki-67 
status. In two external validation cohorts, the global FD 
for prediction of pCR to NAC achieved AUCs ranging 
from 0.65–0.83 for patients with four molecular sub-
types (HR+/HER2-, HR+/HER2+, HR-/HER2-, and HR-/
HER+) (Supplementary Fig. S3).

The nomogram model-1 achieved AUCs ranging from 
0.72–0.83 for patients with age ≤ 45 years or age > 45 
years, and 0.74–0.82 for premenopausal or postmeno-
pausal patients in the two external validation cohorts. For 
patients with high and low Ki-67 expression, the nomo-
gram model-1 achieved AUCs of 0.77 (95% CI: 0.69–
0.85) and 0.80 (95% CI: 0.79–0.82) in external validation 
cohort 1 (Supplementary Fig. S4).

Survival analysis
For survival analysis, 171 patients from center A (median 
age, 50 years [IQR, 45–55 years]) were enrolled. During 

the follow-up (DFS: median, 29 months [IQR, 15–44 
months]; OS: median, 37 months [IQR, 18.05–48.85 
months]), 52 patients had recurrence and 14 patients 
died (Table 4).

Table 4 The characteristics of patients for survival analysis

Unless otherwise indicated, numbers represent the count of patients, with 
percentages in parentheses

DFS Disease-free survival, FD fractal dimension, HER2 human epidermal growth 
factor receptor2, HR hormone receptor, OS overall survival
a Data are medians, with IQRs in parentheses

Characteristics Total (n = 171)

Age (years)a 50 (45–55)

Age group

 ≤ 45 48 (28)

 > 45 123 (72)

Menopausal status

 Premenopausal 102 (60)

 Postmenopausal 69 (40)

HR status

 Negative 74 (43)

 Positive 97 (57)

HER2 status

 Negative 108 (63)

 Positive 63 (37)

Ki-67 status

 Low (< 20%) 22 (13)

 High (≥ 20%) 149 (87)

Clinical T stage

 cT1 17 (10)

 cT2 90 (53)

 cT3 36 (21)

 cT4 28 (16)

Clinical N stage

 cN0 20 (12)

 cN1 55 (32)

 cN2 67 (39)

 cN3 29 (17)

Treatment response

 Non-pCR 133 (78)

 pCR 38 (22)

Global_FD 1.94 ± 0.25

DFS

 Follow-up time (DFS)a 20.1 (5.85–36.0)

 Recurrence 52 (30)

 No recurrence 119 (70)

OS

 Follow-up time (OS)a 36.9 (18.05–48.85)

 Death 14 (8)

 Survival 157 (92)
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Cox proportional hazards analysis identified menopau-
sal status (hazard ratio [HR], 1.88 [95% CI: 1.08, 3.28]; P 
= 0.03), NAC treatment response (HR, 3.75 [95% CI: 1.14, 
12.33]; P = 0.03) and global FD (HR, 2.03 [95% CI: 1.08, 
3.81]; P = 0.03) were independent prognostic factors for 
DFS. While cT4 stage (HR, 5.92 [95% CI: 1.50, 23.34]; P = 
0.01) and global FD (HR, 4.85 [95% CI: 1.05, 22.46]; P = 
0.04) were independent prognostic factors for OS (Fig. 5).

For DFS, the cutoff for dividing high and low-risk 
groups was 11.71, while for OS, the cutoff value was 
42.01. Kaplan-Meier analysis for DFS and OS revealed 
significant differences between the low and high-risk 
groups (log-rank test, DFS: P = 0.04; OS: P < 0.001), with 
the low-risk group exhibiting better DFS and OS (Fig. 6).

Discussion
Accurately predicting pCR to NAC and prognosis in 
breast cancer patients is crucial for clinical decision-
making. This study used fractal analysis to quantify the 
tumor morphological complexity. The nomogram model 
combining global FD and clinicopathologic variables 
(HR status and HER2 status) showed good performance 
in predicting pCR to NAC. Additionally, the nomogram 
model that integrated global FD and clinicopathological 
variables could be used for prognostic stratification in 
patients with breast cancer.

Previously, tumor morphology descriptions relied 
mainly on subjective assessments by radiologists and 
imaging shape features, showing diversity but lacking 
a quantitative indicator reflecting both tumor size and 

Fig. 5 Forest plots of univariate and multivariate Cox proportional hazards regression analysis of DFS (A-B) and OS (C-D). Variables with a p-value 
of less than 0.05 in the univariate Cox proportional hazards regression analysis were included in the multivariate Cox proportional hazards 
regression analysis. The global FD was identified as an independent prognostic factor for both DFS and OS, with higher global FD values indicating 
poor prognosis. CI = confidence interval, DFS = disease-free survival, FD = fractal dimension, HER2 = human epidermal growth factor receptor2, HR 
= hormone receptor, OS = overall survival
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regularity. FD quantifies tumor morphological complex-
ity without dependence on imaging techniques, which 
is suitable for broad clinical applications. Previous stud-
ies often focused on 2D measurements [16–18]. Vari-
ance-components analysis revealed that, compared to 
global FD, 2D FDs showed a higher coefficient of varia-
tion between readings and a lower coefficient of varia-
tion between patients. This indicates that global FD may 

provide a more robust measure and may be beneficial 
in reflecting patient differences. Spearman correlation 
analysis revealed that global FD negatively correlates with 
sphericity, and the surface area to volume ratio, but posi-
tively with tumor size; higher morphological complexity 
(i.e., lower sphericity and larger tumor size) is reflected in 
increased global FD.

Fig. 6 Prognostic nomogram models and Kaplan-Meier survival curves for DFS (A-B) and OS (C-D). Kaplan-Meier analysis showed significant 
differences in DFS and OS between the low-risk and high-risk groups, with the low-risk group demonstrating better prognosis. DFS = disease-free 
survival, FD = fractal dimension, OS = overall survival
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Previous studies have focused on predicting pCR to 
NAC using clinical TNM staging, HR status, HER2 sta-
tus, and Ki-67 expression, yet predictions based solely on 
clinicopathologic variables have shown limitations [38, 
39]. Models developed by Li et al [9], based on tumor mor-
phological features, achieved AUCs between 0.69 and 0.81 
without further validation. Based on MRI, the radiomics 
model developed by Liu et al. [32] achieved AUCs ranging 
from 0.71 to 0.80. Zhuang et al enhanced predictive model 
performance by combining radiomics and clinicopatho-
logic variables, the combined model achieved an AUC of 
0.826 [40]. In this study, the nomogram model-1 (combin-
ing global FD, HR status, and HER2 status) achieved AUCs 
of 0.80 and 0.74, on par with previous studies. Global FD 
and nomogram model-1 also showed good performance 
in predicting pCR in subgroup analyses. Notably, global 
FD offers clinicians an easily understandable quantitative 
feature, providing interpretability through its depiction of 
tumor morphology. Our findings suggest the potential of 
global FD as an imaging biomarker in assisting clinicians 
to identify pCR before NAC, which was more convenient 
to calculate than radiomics features.

This study explored the application of global FD in pre-
dicting DFS and OS. Our findings indicated that patients 
with lower nomogram model (combining clinicopatho-
logical variables and global FD) scores exhibited better 
DFS and OS. Cox proportional hazards models indicated 
global FD was an independent prognostic factor for both 
DFS and OS. Previous studies have substantiated the 
importance of MRI tumor morphological features like 
tumor size in predicting breast cancer prognosis [13, 41, 
42]. Our results offer a new perspective on prognostic 
prediction of breast cancer using non-invasive MRI tech-
nology to quantify tumor morphological complexity.

This study has several limitations. First, as a retrospec-
tive analysis incorporating data from four centers, the 
global FD’s clinical applicability and effectiveness need 
further validation through prospective analysis. Second, 
while this study used semi-automatic segmentation to 
ensure accuracy in FD calculation, fully automatic tech-
niques could further augment stability and reduce sub-
jectivity. Additionally, the prognostic analysis was based 
on a limited single-center sample and needs exploration 
in larger, multi-center cohorts to ascertain the value of 
global FD in prognosis prediction. Moreover, a compre-
hensive consideration of tumor morphology and spatial 
distribution could more fully quantify intratumoral het-
erogeneity. Finally, given that tumor morphology changes 
with treatment, reliance on pretreatment images may 
have limitations. Exploring the value of longitudinal 
changes in global FD is necessary to predict pCR to NAC 
and prognosis.

Conclusions
In conclusion, the global FD developed from pretreat-
ment MRI offers a non-invasive and practical approach 
to quantify the tumor morphological complexity and can 
predict pCR and prognosis in breast cancer. The gener-
alizability and reproducibility of the prediction model 
based on the global FD should be validated with larger 
prospective data sets.
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